|本期目录/Table of Contents|

[1]林海龙,赵权宇,黄和.微藻处理废水的研究进展[J].生物加工过程,2019,17(01):72-82.[doi:10.3969/j.issn.1672-3678.2019.01.010]
 LIN Hailong,ZHAO Quanyu,HUANG He.Progress in wastewater treatment by microalgae[J].Chinese Journal of Bioprocess Engineering,2019,17(01):72-82.[doi:10.3969/j.issn.1672-3678.2019.01.010]
点击复制

微藻处理废水的研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
17
期数:
2019年01期
页码:
72-82
栏目:
出版日期:
2019-01-30

文章信息/Info

Title:
Progress in wastewater treatment by microalgae
文章编号:
1672-3678(2019)01-0072-11
作者:
林海龙1赵权宇2黄和2
1.国投生物科技投资有限公司,北京 100034; 2.南京工业大学 药学院,江苏 南京 211800
Author(s):
LIN Hailong1ZHAO Quanyu2HUANG He2
1.SDIC Biotechnology Investment Co.,Ltd.,Beijing 100034,China; 2.School of Pharmaceutical Sciences,Nanjing Tech University,Nanjing 211800,China
关键词:
微藻 废水处理 藻菌共培养 光生物反应器 过程优化 藻菌絮体
分类号:
Q89
DOI:
10.3969/j.issn.1672-3678.2019.01.010
文献标志码:
A
摘要:
微藻可以高效利用废水中的部分小分子有机质、氮和磷等污染物合成生物质,并达到处理废水的目的。近年来,利用微藻进行农业废水、工业废水、城市废水和含农药以及抗生素等有害废水的处理等有了一些新的尝试。本文中,笔者重点分析了微藻处理废水中藻种选育、藻菌共培养、藻菌絮体、工艺集成和反应器设计以及可持续综合开发等关键技术问题。其中,藻菌共培养可以发挥微藻和菌的各自优势,提高废水处理效率。藻菌絮体技术还具有便于采收的特点,具备进一步研究的潜力。针对不同废水的处理需求,笔者提出合理构建绿色可持续发展路线,推动微藻处理废水的更广泛应用。

参考文献/References:

[1] ACIEN F G,GOMEZ-SERRANO C,MORALES-AMARAL M M,et al.Wastewater treatment using microalgae:how realistic a contribution might it be to significant urban wastewater treatment[J].Appl Microbiol Biotechnol,2016,100:9013-9022.
[2] 唐小红,常影,黄和,等.微藻在CO2生物捕集及废水生态修复领域的研究进展[J].中国生物工程学报,2011,31(9):124-131.
[3] HALFHIDE T,AKERSTROM A,LEKANG O I,et al.Production of algal biomass,chlorophyll,starch and lipids using aquaculture wastewater under axenic and non-axenic conditions[J].Algal Res,2014,6:152-9.
[4] ADDY M M,KABIR F,ZHANG R,et al.Co-cultivation of microalgae in aquaponic systems[J].Bioresour Technol,2017,245:27-34.
[5] XU J,ZHAO Y,ZHAO G,et al.Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment[J].Appl Microbiol Biotechnol,2015,99:6493-6501.
[6] GANESHKUMAR V,SUBASHCHANDRABOSE S R,DHARMARAJAN R,et al.Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp.MM3[J].Bioresour Technol,2018,256:254-258.
[7] HUY M,KUMAR G,KIM H W,et al.Photoautotrophic cultivation of mixed microalgae consortia using various organic waste streams towards remediation and resource recovery[J].Bioresour Technol,2018,247:576-581.
[8] GAO F,PENG Y Y,LI C,et al.Simultaneous nutrient removal and biomass/lipid production by Chlorella sp.in seafood processing wastewater[J].Sci Total Environ,2018,640-641:943-953.
[9] MEMON AR,ANDRESEN J,HABIB M,et al.Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol[J].Bioresour Technol,2014,157:37-43.
[10] SOLOVCHENKO A,POGOSYAN S,CHIVKUNOVA O,et al.Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence[J].Algal Res,2014,6:234-241.
[11] GE S,CHAMPAGNE P.Nutrient removal,microalgal biomass growth,harvesting and lipid yield in response to centrate wastewater loadings[J].Water Res,2016,88:604-612.
[12] REN H,TUO J,ADDY M M,et al.Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal[J].Bioresour Technol,2017,245:1130-1138.
[13] DANESHVAR E,ZARRINMEHR M J,HASHTJIN A M,et al.Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment,lipid extraction and tetracycline biosorption[J].Bioresour Technol,2018,268:523-530.
[14] WANG J H,ZHANG T Y,DAO G H,et al.Microalgae-based advanced municipal wastewater treatment for reuse in water bodies[J].Appl Microbiol Biotechnol,2017; 101:2659-2675.
[15] CHENG J,YE Q,XU J,et al.Improving pollutants removal by microalgae Chlorella PY-ZU1 with 15% CO2 from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment[J].Bioresour Technol,2016,216:273-279.
[16] KATAM K,BHATTACHARYYA D.Comparative study on treatment of kitchen wastewater using a mixed microalgal culture and an aerobic bacterial culture:kinetic evaluation and FAME analysis[J].Environ Sci Pollut Res,2018,25:20732-20742.
[17] JIANG L,PEI H,HU W,et al.The feasibility of using complex wastewater from a monosodium glutamate factory to cultivate Spirulina subsalsa and accumulate biochemical composition[J].Bioresour Technol,2015,180:304-310.
[18] ARIAS D M,SOLE-BUNDO M,GARFI M,et al.Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater[J].Bioresour Technol,2018,247:513-519.
[19] BAGLIERI A,SIDELLA S,BARONE V,et al.Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water[J].Environ Sci Pollut Res,2016,23:18165-18174.
[20] GUO W Q,ZHENG H S,LI S,et al.Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae[J].Bioresour Technol,2016,221:284-290.
[21] NORVILL Z N,TOLEDO-CERVANTES A,BLANCO S,et al.Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds[J].Bioresour Technol,2017,232:35-43.
[22] HOM-DIAZ A,JAEN-GIL A,BELLO-LASERNA L,et al.Performance of a microalgal photobioreactor treating toilet wastewater:pharmaceutically active compound removal and biomass harvesting[J].Sci Total Environ,2017,592:1-11.
[23] CHENG J,YE Q,LI K,et al.Removing ethinylestradiol from wastewater by microalgae mutant Chlorella PY-ZU1 with CO2 fixation[J].Bioresour Technol,2018,249:284-289.
[24] SHI X,YEAP T S,HUANG S,et al.Pretreatment of saline antibiotic wastewater using marine microalga[J].Bioresour Technol,2018,258:240-246.
[25] CHENG T,ZHANG W,ZHANG W,et al.An oleaginous filamentous microalgae Tribonema minus exhibits high removing potential of industrial phenol contaminants[J].Bioresour Technol,2017,238:749-754.
[26] KURADE M B,KIM J R,GOVINDWAR S P,et al.Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris:microalgaltolerance to xenobiotic pollutants and metabolism[J].Algal Res,2016,20:126-134.
[27] WANG L B,XUE C Z,WANG L,et al.Strain improvement of Chlorella sp.for phenol biodegradation by adaptive laboratory evolution[J].Bioresour Technol,2016,205:264-268.
[28] ZHANG T Y,WU Y H,ZHUANG L L,et al.Screening heterotrophic microalgal strains by using the Biolog method for biofuel production from organic wastewater[J].Algal Res,2014,6:175-179.
[29] POSADAS E,GARCIA-ENCINA P A,SOLTAU A,et al.Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors[J].Bioresour Technol,2013,139:50-58.
[30] ALCANTARA C,DOMINGUEZ J M,GARCIA D,et al.Evaluation of wastewater treatment in a novel anoxic-aerobic algal-bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances[J].Bioresour Technol,2015,191:173-186.
[31] ARCILA J S,BUITRON G.Microalgae-bacteria aggregates:effect of the hydraulic retention time on the municipal wastewater treatment,biomass settleability and methane potential[J].J Chem Technol Biotechnol,2016,91:2862-2870.
[32] LEE C S,OH H S,OH H M,et al.Two-phase photoperiodic cultivation of algal-bacterial consortia for high biomass production and efficient nutrient removal from municipal wastewater[J].Bioresour Technol,2016,200:867-875.
[33] TANG C C,ZUO W,TIAN Y,et al.Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors[J].Bioresour Technol,2016,222:156-164.
[34] RADA-ARIZA A M,LOPEZ-VAZQUEZ C M,VAN DER STEEN N P,et al.Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors[J].Bioresour Technol,2017,245:81-89.
[35] RYU B G,KIM J,HAN J I,et al.Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids[J].Bioresour Technol,2017,225:58-66.
[36] SHEN Y,GAO J,LI L.Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis:microorganism growth and nutrients removal[J].Bioresour Technol,2017,243:905-913.
[37] BELANGER-LEPINE F,TREMBLAY A,HUOT Y,et al.Cultivation of an algae-bacteria consortium in wastewater from an industrial park:effect of environmental stress and nutrient deficiency on lipid production[J].Bioresour Technol,2018,267:657-665.
[38] IASIMONE F,ZUCCARO G,D’ORIANO V,et al.Combined yeast and microalgal cultivation in a pilot-scale raceway pond for urban wastewater treatment and potential biodiesel production[J].Water Sci Technol,2018,77:1062-1071.
[39] JIANG Y,WANG H,ZHAO C,et al.Establishment of stable microalgal-bacterial consortium in liquid digestate for nutrient removal and biomass accumulation[J].Bioresour Technol,2018,268:300-307.
[40] LIU L,ZENG Z,BEE M,et al.Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor[J].J Hazard Mater,2018,349:135-142.
[41] PARLADE E,HOM-DIAZ A,BLANQUEZ P,et al.Effect of cultivation conditions on beta-estradiol removal in laboratory and pilot-plant photobioreactors by an algal-bacterial consortium treating urban wastewater[J].Water Res,2018,137:86-96.
[42] PASTORE M,SFORZA E.Exploiting symbiotic interactions between Chlorella protothecoides and Brevundimonas diminuta for an efficient single-step urban wastewater treatment[J].Water Sci Technol,2018,78:216-224.
[43] MA X,ZHOU W,FU Z,et al.Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system[J].Bioresour Technol,2014,167:8-13.
[44] 王荣昌,程霞,曾旭.污水处理中菌藻共生系统去除污染物机理及其应用进展[J].环境科学学报,2018,38(1):13-22.
[45] 巫小丹,阮榕生,王辉.菌藻共生系统处理废水研究现状及发展前景[J].环境工程,2014,32(3):34-37.
[46] LEE Y,HU H F,CHIU C Y.Using agar-alginate immobilized cyanobacteria(Dermocarpella sp.)arranged in tubular chains to treat swine farm waste water[J].J Appl Phycol,2013,25:1747-1752.
[47] MUJTABA G,LEE K.Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge[J].Water Res,2017,120:174-184.
[48] VAN DEN HENDE S,BEELEN V,BORE G,et al.Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs:from lab reactors to an outdoor raceway pond[J].Bioresour Technol,2014,159:342-354.
[49] VAN DEN HENDE S,CARRE E,COCAUD E,et al.Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors[J].Bioresour Technol,2014,161:245-254.
[50] VAN DEN HENDE S,BEELEN V,JULIEN L,et al.Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass:an outdoor pilot-scale study[J].Bioresour Technol,2016,218:969-979.
[51] VAN DEN HENDE S,RODRIGUES A,HAMAEKERS H,et al.Microalgal bacterial flocs treating paper mill effluent:a sunlight-based approach for removing carbon,nitrogen,phosphorus,and calcium[J].New Biotechnol,2017,39:1-10.
[52] WANG Y,GUO W,YEN H W,et al.Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production[J].Bioresour Technol,2015,198:619-625.
[53] WANG Y,HO S H,CHENG C L,et al.Perspectives on the feasibility of using microalgae for industrial wastewater treatment[J].Bioresour Technol,2016,222:485-497.
[54] REN H Y,LIU B F,KONG F,et al.Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation[J].Bioresour Technol,2014,157:355-359.
[55] ANBALAGAN A,SCHWEDE S,LINDBERG C F,et al.Influence of hydraulic retention time on indigenous microalgae and activated sludge process[J].Water Res,2016,91:277-284.
[56] TRICOLICI O,BUMBAC C,PATROESCU V,et al.Dairy wastewater treatment using an activated sludge-microalgae system at different light intensities[J].Water Sci Technol,2014,69:1598-1605.
[57] WANG L,LIU J,ZHAO Q,et al.Comparative study of wastewater treatment and nutrient recycle via activated sludge,microalgae and combination systems[J].Bioresour Technol,2016,211:1-5.
[58] CHANG H X,FU Q,HUANG Y,et al.An annular photobioreactor with ion-exchange-membrane for non-touch microalgae cultivation with wastewater[J].Bioresour Technol,2016,219:668-676.
[59] CHOUDHARY P,PRAJAPATI S K,KUMAR P,et al.Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications[J].Bioresour Technol,2017,224:276-284.
[60] CHURCH J,RYU H,SADMANI A,et al.Multiscale investigation of a symbiotic microalgal-integrated fixed film activated sludge(MAIFAS)process for nutrient removal and photo-oxygenation[J].Bioresour Technol,2018,268:128-138.
[61] MIRANDA A F,RAMKUMAR N,ANDRIOTIS C,et al.Applications of microalgal biofilms for wastewater treatment and bioenergy production[J].Biotechnol Biofuels,2017,10:120.
[62] ROOSTAEI J,ZHANG Y,GOPALAKRISHNAN K,et al.Mixotrophic microalgae biofilm:a novel algae cultivation strategy for improved productivity and cost-efficiency of biofuel feedstock production[J].Sci Rep,2018,8:12528.
[63] GUTI?RREZ-ALFAROS,RUEDA-M?RQUEZ J J,PERALES J A,et al.Combining sun-based technologies(microalgae and solar disinfection)for urban wastewater regeneration[J].Sci Total Environ,2018,619:1049-1057.
[64] MA J,WANG Z,ZHANG J,et al.Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell(PMFC)[J].Water Res,2017,108:356-364.
[65] ZHANG Q,LI X,GUO D,et al.Operation of a vertical algal biofilm enhanced raceway pond for nutrient removal and microalgae-based byproducts production under different wastewater loadings[J].Bioresour Technol,2018,253:323-332.
[66] ZHANG Q,YU Z,ZHU L,et al.Vertical-algal-biofilm enhanced raceway pond for cost-effective wastewater treatment and value-added products production[J].Water Res,2018,139:144-157.
[67] YAO L,SHI J,MIAO X.Mixed wastewater coupled with CO2 for microalgae culturing and nutrient removal[J].PLoS ONE,2015,10(9):e0139117.
[68] ZHENG H,LIU M,LU Q,et al.Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters[J].Bioresour Technol,2018,249:479-486.
[69] MARKOU G.Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater:optimization of nutrient removal and biomass production[J].Bioresour Technol,2015,193:35-41.
[70] LU Q,CHEN P,ADDY M,et al.Carbon-dependent alleviation of ammonia toxicity for algae cultivation and associated mechanisms exploration[J].Bioresour Technol,2018,249:99-107.
[71] ZHENG H,WU X,ZOU G,et al.Cultivation of Chlorella vulgaris in manure-free piggery wastewater with high-strength ammonium for nutrients removal and biomass production:effect of ammonium concentration,carbon/nitrogen ratio and pH[J].Bioresour Technol,2018,273:203-211.
[72] WANG J,ZHOU W,YANG H,et al.Application of nitrogen sufficiency conversion strategy for microalgae-based ammonium-rich wastewater treatment[J].Environ Technol,2016,37(20):2638-2648.
[73] OLGUIN E J.Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery[J].Biotechnol Adv,2012,30:1031-1046.
[74] RAZZAK S A,HOSSAIN M M,LUCKY R A,et al.Integrated CO2 capture,wastewater treatment and biofuel production by microalgae culturing:a review[J].Renew Sustain Energ Rev,2013,27:622-653.
[75] RENUKA N,PRASANNA R,SOOD A,et al.Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat[J].Environ Sci Pollut Res,2016,23:6608-6620.
[76] WUANG S C,KHIN M C,QIANG P,et al.Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers[J].Algal Res,2016,15:59-64.
[77] VAN DEN HENDE S,CLAESSENS L,DE MUYLDER E,et al.Microalgal bacterial flocs originating from aquaculture wastewater treatment as diet ingredient for Litopenaeus vannamei(Boone)[J].Aquac Res,2016,47:1075-1089.
[78] WIECZOREK N,KUCUKER M A,KUCHTA K.Microalgae-bacteria flocs(MaB-Flocs)as a substrate for fermentative biogas production[J].Bioresour Technol,2015,194:130-136.
[79] PRANDINI J M,DA SILVA M L,MEZZARI M P,et al.Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp[J].Bioresour Technol,2016,202:67-75.
[80] MATA T M,MENDES A M,CAETANO N S,et al.Sustainability and economic evaluation of microalgae grown in brewery wastewater[J].Bioresour Technol,2014,168:151-158.
[81] SFEZ S,VAN DEN HENDE S,TAELMAN S E,et al.Environmental sustainability assessment of a microalgae raceway pond treating aquaculture wastewater:from up-scaling to system integration[J].Bioresour Technol,2015,190:321-331.
[82] VULSTEKE E,VAN DEN HENDE S,BOUREZ L,et al.Economic feasibility of microalgal bacterial floc production for wastewater treatment and biomass valorization:a detailed up-to-date analysis of up-scaled pilot results[J].Bioresour Technol,2017,224:118-129.
[83] DIAZ-GARDUNO B,PINTADO-HERRERA M G,BIEL-MAESO M,et al.Environmental risk assessment of effluents as a whole emerging contaminant:efficiency of alternative tertiary treatments for wastewater depuration[J].Water Res,2017,119:136-149.
[84] MARKOU G,WANG L,YE J,et al.Using agro-industrial wastes for the cultivation of microalgae and duckweeds:contamination risks and biomass safety concerns[J].Biotechnol Adv,2018,36:1238-1254.

相似文献/References:

[1]刘春朝,刘瑞,王锋.微藻培养过程的光特性研究进展[J].生物加工过程,2011,9(06):69.[doi:doi:10.3969/j.issn.1672-3678.2011.06.015]
 LIU Chunzhao,LIU Rui,WANG Feng.Research progress on light characteristics in process of microalgal cultivation[J].Chinese Journal of Bioprocess Engineering,2011,9(01):69.[doi:doi:10.3969/j.issn.1672-3678.2011.06.015]
[2]杨忠华,李方芳,曹亚飞,等.利用微藻固定CO2实现碳减排研究进展[J].生物加工过程,2012,10(01):70.[doi:10.3969/j.issn.1672-3678.2012.01.014]
 YANG Zhonghua,LI Fangfang,CAO Yafei,et al.Recent progress in fixation CO2 to reduce CO2 emission with microalgae[J].Chinese Journal of Bioprocess Engineering,2012,10(01):70.[doi:10.3969/j.issn.1672-3678.2012.01.014]
[3]王锋,刘英,汪印,等.漆酶及其应用[J].生物加工过程,2012,10(04):70.[doi:10.3969/j.issn.1672-3678.2012.04.015]
 WANG Feng,LIU Ying,WANG Yin,et al.Laccase and its applications[J].Chinese Journal of Bioprocess Engineering,2012,10(01):70.[doi:10.3969/j.issn.1672-3678.2012.04.015]
[4]刘玉环,阮榕生,孔庆学,等.利用市政废水和火电厂烟道气大规模培养高油微藻[J].生物加工过程,2008,6(03):29.[doi:10.3969/j.issn.1672-3678.2008.03.005]
 LIU Yu-huan,Roger RUAN,KONG Qing-xue,et al.Mass culture of high oil content microalgae on wastewater and power plant flue gases[J].Chinese Journal of Bioprocess Engineering,2008,6(01):29.[doi:10.3969/j.issn.1672-3678.2008.03.005]
[5]孔维宝,牛世全,马正学,等.微藻生物炼制技术[J].生物加工过程,2008,6(05):1.[doi:10.3969/j.issn.1672-3678.2008.05.001 ]
 KONG Wei-bao,NIU Shi-quan,MA Zheng-xue,et al.Microalgae bio-refinery technology[J].Chinese Journal of Bioprocess Engineering,2008,6(01):1.[doi:10.3969/j.issn.1672-3678.2008.05.001 ]
[6]陈智杰,何宏舟.微藻培养系统内光现象的研究进展[J].生物加工过程,2014,12(05):85.[doi:10.3969/j.issn.1672-3678.2014.05.015]
 CHEN Zhijie,HE Hongzhou.Light phenomena in microalgae culturing systems[J].Chinese Journal of Bioprocess Engineering,2014,12(01):85.[doi:10.3969/j.issn.1672-3678.2014.05.015]
[7]刘玉环,黄磊,王允圃,等.大规模微藻光生物反应器的研究进展[J].生物加工过程,2016,14(01):65.[doi:10.3969/j.issn.1672-3678.2016.01.013]
 LIU Yuhuan,HUANG Lei,WANG Yunpu,et al.Development of microalgal photobioreactors for mass cultivation[J].Chinese Journal of Bioprocess Engineering,2016,14(01):65.[doi:10.3969/j.issn.1672-3678.2016.01.013]

备注/Memo

备注/Memo:
收稿日期:2018-11-01修回日期:2018-12-10
基金项目:国家自然科学基金(21576278); 江苏省先进生物制造协同创新中心项目(XTC1810); 江苏省高校优秀创新团队计划(2015)
作者简介:林海龙(1976—),男,福建福州人,博士,高级工程师,研究方向:生物化工; 赵权宇(联系人),教授,E-mail:zhaoqy@njtech.edu.cn; 黄和(联系人),教授,E-mail:biotech@njtech.edu.cn
引文格式:林海龙,赵权宇,黄和.微藻处理废水的研究进展[J].生物加工过程,2019,17(1):72-82.
LIN Hailong,ZHAO Quanyu,HUANG He.Progress in wastewater treatment by microalgae[J].Chin J Bioprocess Eng,2019,17(1):72-82..
更新日期/Last Update: 2019-01-30