|本期目录/Table of Contents|

[1]宋翠,张潇,魏炜,等.原子力显微镜在测定颗粒与细胞相互作用中的应用[J].生物加工过程,2019,17(01):53-59.[doi:10.3969/j.issn.1672-3678.2019.01.008]
 SONG Cui,ZHANG Xiao,WEI Wei,et al.Application of atomic force microscopy in measuring particle-cell interactions[J].Chinese Journal of Bioprocess Engineering,2019,17(01):53-59.[doi:10.3969/j.issn.1672-3678.2019.01.008]
点击复制

原子力显微镜在测定颗粒与细胞相互作用中的应用()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
17
期数:
2019年01期
页码:
53-59
栏目:
出版日期:
2019-01-30

文章信息/Info

Title:
Application of atomic force microscopy in measuring particle-cell interactions
文章编号:
1672-3678(2019)01-0053-07
作者:
宋翠12张潇1魏炜12马光辉12
1. 中国科学院 过程工程研究所 生化工程国家重点实验室,北京 100190; 2.中国科学院大学,北京 100049
Author(s):
SONG Cui12ZHANG Xiao1WEI Wei12MA Guanghui12
1. State Key Laboratory Biochemical Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China; 2. University of Chinese Academy of Sciences,Beijing 100049,China
关键词:
原子力显微镜 纳微颗粒 颗粒-细胞相互作用 生物医药
分类号:
Q66
DOI:
10.3969/j.issn.1672-3678.2019.01.008
文献标志码:
A
摘要:
凭借独特的尺寸效应和理化性质,纳微颗粒在生物医药领域的应用日益广泛,其与细胞的相互作用也备受关注,对其进行定量测量和机制研究愈发重要。目前,原子力显微镜(atomic force microscopy,AFM)由于具有高灵敏度(皮牛级)、高分辨率(纳米级)以及在生理环境中可进行实时检测等优势成为检测颗粒与细胞相互作用的重要工具。利用AFM检测颗粒与细胞相互作用,有助于确定作用过程中的重要参数,解释颗粒在药物递送、免疫响应和细胞力学等应用方面深层次的机制。本文中,笔者就原子力显微镜检测颗粒与细胞相互作用及其应用进行系统的综述,并对其未来的发展方向进行展望。

参考文献/References:

[1] PATRA J K,DAS G,FRACETO L F,et al.Nano based drug delivery systems:recent developments and future prospects[J].J Nanobiotechcnol,2018,16(1):71.
[2] SILVA A L,PERES C,CONNIOT J,et al.Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation[J].Semin Immunol,2017,34:3-24.
[3] MURUGAN K,CHOONARA Y E,KUMAR P,et al.Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures[J].Int J Nanomed,2015,10:2191-2206.
[4] CHEN D,WANG J,WANG Y,et al.Promoting inter-/intra- cellular process of nanomedicine through its physicochemical properties optimization[J].Curr Drug Metab,2018,19(1):75-82.
[5] TONGA G Y,SAHA K,ROTELLO V M.25th Anniversary article:interfacing nanoparticles and biology:new strategies for biomedicine[J].Adv Mater,2014,26(3):359-370.
[6] ASHKIN A,DZIEDZIC J M,BJORKHOLM J E,et al.Observation of a single-beam gradient force optical trap for dielectric particles[J].Opt Lett,1986,11(5):288.
[7] CRICK F H C,HUGHES A F W.The physical properties of cytoplasm—a study by means of the magnetic particle method:part I.experimental[J].Exp Cell Res,1950,1(1):37-80.
[8] BINNIG G,QUATE C F,GERBER C.Atomic force microscope[J].Phys Rev Lett,1986,56(9):930-933.
[9] DUFR?NE Y F,ANDO T,GARCIA R,et al.Imaging modes of atomic force microscopy for application in molecular and cell biology[J].Nat Nanotechnol,2017,12(4):295-307.
[10] AMAROUCH M Y,EL HILALY J,MAZOUZI D.AFM and fluid FM technologies:recent applications in molecular and cellular biology[J].Scanning,2018,doi:10.1155/2018/7801274.
[11] CAPPELLA B,DIETLER G.Force-distance curves by atomic force microscopy[J].Surf Sci Rep,1999,34(1/2/3):5-104.
[12] HUTTER J L,BECHHOEFER J.Calibration of atomic-force microscope tips[J].Rev Sci Instrum,1993,64(7):1868-1873.
[13] BUTT H J,JASCHKE M.Calculation of thermal noise in atomic force microscopy[J].Nanotechnology,1995,6:1-7.
[14] SADER JE,LARSON I,MULVANEY P,et al.Method for calibration of atomic force microscope cantilevers[J].Rev Sci Instrum,1995,66,3789-3798.
[15] SADER J E,CHON J W M,MULVANEY P.Calibration of rectangular atomic force microscope cantilevers[J].Rev Sci Instrum,1999,70,3967-3969.
[16] SMIRNOV W,KRIELE A,HOFFMANN R,et al.Diamond-modified AFM probes:from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes[J].Anal Chem,2011,83(12):4936-4941.
[17] ENGSTROM D S,SAVU V,ZHU X,et al.High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts[J].Nano Lett,2011,11(4):1568-1574.
[18] SHAN Y,WANG H.The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy[J].Chem Soc Rev,2015,44(11):3617-3638.
[19] TARGOSZ-KORECKA M,MALEK-ZIETEK K E,BRZEZINKA G D,et al.Morphological and nanomechanical changes in mechanosensitive endothelial cells induced by colloidal AFM probes[J].Scanning,2016,38(6):654-664.
[20] DUCKER W A,SENDEN T J,PASHLEY R M.Direct measurement of colloidal forces using an atomic force microscope[J].Nature,1991,353:239-241.
[21] SIEBEN C,KAPPEL C,ZHU R,et al.Influenza virus binds its host cell using multiple dynamic interactions[J].Proc Natl Acad Sci USA,2012,109(34):13626-13631.
[22] SHINTO H,HIRATA T,FUKASAWA T,et al.Effect of interfacial serum proteins on melanoma cell adhesion to biodegradable poly(l-lactic acid)microspheres coated with hydroxyapatite[J].Colloids Surf B Biointerfaces,2013,108:8-15.
[23] BUTT H J.Measuring electrostatic,van der Waals,and hydration forces in electrolyte solutions with an atomic force microscope[J].Biophys J,1991,60(6):1438-1444.
[24] GAN Y.Invited review article:a review of techniques for attaching micro- and nanoparticles to a probe’s tip for surface force and near-field optical measurements[J].Rev Sci Instrum,2007,78(8):081101.
[25] D’SA D J,CHAN H K,CHRZANOWSKI W.Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy[J].J Colloid Interface Sci,2014,426:190-198.
[26] VADILLO-RODR?GUEZ V,BUSSCHER H J,NORDE W,et al.Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods[J].Appl Environ Microbiol,2004,70(9):5441-5446.
[27] LONERGAN N E,BRITT L D,SULLIVAN C J.Immobilizing live Escherichia coli for AFM studies of surface dynamics[J].Ultramicroscopy,2014,137:30-39.
[28] DOMKE J,RADMACHER M.Measuring the elastic properties of thin polymer films with the atomic force microscope[J].Langmuir,1998,14(12):3320-3325.
[29] MEDALSY I,HENSEN U,MULLER D J.Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force-volume AFM[J].Angew Chem Int Ed,2011,50(50):12103-12108.
[30] DOKUKIN M E,SOKOLOV I.Quantitative mapping of the elastic modulus of soft materials with Harmoni X and peak force QNM AFM modes[J].Langmuir,2012,28(46):16060-16067.
[31] CALZADO-MART?N A,ENCINAR M,TAMAYO J,et al.Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy[J].ACS Nano,2016,10(3):3365-3374.
[32] LIM H P,TEY B T,CHAN E S.Particle designs for the stabilization and controlled-delivery of protein drugs by biopolymers:a case study on insulin[J].J.Control Release,2014,186:11-21.
[33] ULAPANE K R,KOPEC B M,MORAL M E G,et al.Peptides and drug delivery[J].Adv Exp Med Biol,2017,1030:167-184.
[34] FAROKHZAD O C,LANGER R.Impact of nanotechnology on drug delivery[J].ACS Nano,2009,3(1):16-20.
[35] EL-SHERBINY I M,ABBAS Y.Janus nano- and microparticles as smart drug delivery systems[J].Curr Pharm Biotechnol,2016,17(8):673-682.
[36] HONG S,BIELINSKA A U,MECKE A,et al.Interaction of poly(amidoamine)dendrimers with supported lipid bilayers and cells:hole formation and the relation to transport[J].Bioconjug Chem,2004,15(4):774-782.
[37] LEROUEIL P R,HONG S,MECKE A,et al.Nanoparticle interaction with biological membranes:does nanotechnology present a Janus face[J].Acc Chem Res,2007,40(5):335-342.
[38] LEROUEIL P R,BERRY S A,DUTHIE K,et al.Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers[J].Nano Lett,2008,8(2):420-424.
[39] PYO N,TANAKA S,MCNAMEE C E,et al.Effect of the cell type and cell density on the binding of living cells to a silica particle:an atomic force microscope study[J].Colloids Surf B Biointerfaces,2006,53(2):278-287.
[40] PYRGIOTAKIS G,BLATTMANN C O,DEMOKRITOU P.Real-time nanoparticle-cell interactions in physiological media by atomic force microscopy[J].ACS Sustain Chem Eng,2014,2(7):1681-1690.
[41] RIERA ROMO M,P?REZ-MART?NEZ D,CASTILLO FERRER C.Innate immunity in vertebrates:an overview[J].Immunology,2016,148(2):125-139.
[42] GOURLEY T S,WHERRY E J,MASOPUST D,et al.Generation and maintenance of immunological memory[J].Semin Immunol,2004,16(5):323-333.
[43] KONONENKO V,NARAT M,DROBNE D.Nanoparticle interaction with the immune system[J].Arh Hig Rada Toksikol,2015,66(2):97-108.
[44] BORASCHI D,ITALIANI P,PALOMBA R,et al.Nanoparticles and innate immunity:new perspectives on host defence[J].Semin Immunol,2017,34:33-51.
[45] NG G,SHARMA K,WARD S M,et al.Receptor-independent,direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells[J].Immunity,2008,29(5):807-818.
[46] MU L B,TU Z,MIAO L,et al.A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing[J].Nat Commun,2018,9(1):4259.
[47] FLACH T L,NG G,HARI A,et al.Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity[J].Nat Med,2011,17(4):479-487.
[48] MOEENDARBARY E,HARRIS A R.Cell mechanics:principles,practices,and prospects[J].Wiley Interdiscip Rev Syst Biol Med,2014,6(5):371-388.
[49] FLETCHER D A,MULLINS R D.Cell mechanics and the cytoskeleton[J].Nature,2010,463:485-492.
[50] WATANABE-NAKAYAMA T,MACHIDA S I,HARADA I,et al.Direct detection of cellular adaptation to local cyclic stretching at the single cell level by atomic force microscopy[J].Biophys J,2011,100(3):564-572.
[51] BABAHOSSEINI H,CARMICHAEL B,STROBL J S,et al.Sub-cellular force microscopy in single normal and cancer cells[J].Biochem Biophys Res Commun,2015,463(4):587-592.
[52] BONDIA P,CASADO S,FLORS C.Correlative super-resolution fluorescence imaging and atomic force microscopy for the characterization of biological samples[J].Methods Mol Biol,2017,1663:105-113.
[53] FUKUDA S,UCHIHASHI T,IINO R,et al.High-speed atomic force microscope combined with single-molecule fluorescence microscope[J].Rev Sci Instrum,2013,84(7):073706.
[54] SHI L,SHI S,LI J,et al.AFM and fluorescence imaging of nanomechanical response in periodontal ligament cells[J].Front Biosci,2010,2(3):1028-1041.
[55] ZEMA J,DANILKIEWICZ J,ORZECHOWSKA B,et al.Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues[J].Semin Cell Dev Biol,2018,73:115-124.
[56] CROSS S E,JIN Y S,RAO J,et al.Nanomechanical analysis of cells from cancer patients[J].Nat Nanotechnol,2007,2(12):780-783.
[57] NGUYEN N,SHAO Y,WINEMAN A,et al.Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells[J].Math Biosci,2016,277:77-88.
[58] LI Q S,LEE G Y,ONG C N,et al.AFM indentation study of breast cancer cells[J].Biochem Biophys Res Commun,2008,374(4):609-613.
[59] LIU H,WEN J,XIAO Y,et al.In situ mechanical characterization of the cell nucleus by atomic force microscopy[J].ACS Nano,2014,8(4):3821-3828.

相似文献/References:

[1]杜晓南,李岩,孙李靖,等.多聚亚基蛋白质在固-液界面团聚的测量与表征[J].生物加工过程,2012,10(01):51.[doi:10.3969/j.issn.1672-3678.2012.01.010]
 DU Xiaonan,LI Yan,SUN Lijing,et al.Measurement and Characterization of the Agglomeration of Multimeric Proteins on Solid-liquid Interface[J].Chinese Journal of Bioprocess Engineering,2012,10(01):51.[doi:10.3969/j.issn.1672-3678.2012.01.010]

备注/Memo

备注/Memo:
收稿日期:2018-11-19修回日期:2018-12-18
基金项目:中国科学院仪器功能开发技术创新项目(2015ga03)
作者简介:宋翠(1982—),女,山东济南人,博士研究生,研究方向:生物工程; 魏炜(联系人),研究员,E-mail:weiwei@ipe.ac.cn; 马光辉(联系人),研究员,E-mail:ghma@ipe.ac.cn
引文格式:宋翠,张潇,魏炜,等.原子力显微镜在测定颗粒与细胞相互作用中的应用[J].生物加工过程,2019,17(1):53-59.
SONG Cui,ZHANG Xiao,WEI Wei,et al.Application of atomic force microscopy in measuring particle-cell interactions[J].Chin J Bioprocess Eng,2019,17(1):53-59..
更新日期/Last Update: 2019-01-30