|本期目录/Table of Contents|

[1]于洋.基于肌红蛋白的氧激活蛋白的理性设计[J].生物加工过程,2019,17(01):23-28.[doi:10.3969/j.issn.1672-3678.2019.01.004]
 YU Yang.Rational design of oxygen-activating protein based on myoglobin[J].Chinese Journal of Bioprocess Engineering,2019,17(01):23-28.[doi:10.3969/j.issn.1672-3678.2019.01.004]
点击复制

基于肌红蛋白的氧激活蛋白的理性设计()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
17
期数:
2019年01期
页码:
23-28
栏目:
出版日期:
2019-01-30

文章信息/Info

Title:
Rational design of oxygen-activating protein based on myoglobin
文章编号:
1672-3678(2019)01-0023-06
作者:
于洋
北京理工大学 化学与化工学院 生化工程系 合成生物系统研究所,北京 100081
Author(s):
YU Yang
Institute for Synthetic Biosystem,Department of Biochemical Engineering,School of Chemistry and Chemical Engineering,Beijing Institute of Technology,Beijing 100081,China
关键词:
蛋白质理性设计 肌红蛋白 血红素 非天然氨基酸 氧激活 金属酶
分类号:
Q814.1
DOI:
10.3969/j.issn.1672-3678.2019.01.004
文献标志码:
A
摘要:
金属酶催化了生命活动及工业催化中的很多重要反应。天然金属酶的研究往往受限于蛋白质本身结构复杂、表达纯化困难等问题。通过理性设计,可以在分子量小、结构简单、易于表达的骨架蛋白中模拟天然金属酶的结构、光谱和功能,构建人工金属酶。人工酶可以为天然酶的机制研究提供新的平台。本文中,笔者探讨以肌红蛋白为骨架蛋白,通过结构特征的模拟、非天然氨基酸的引入等手段,模拟氧激活蛋白,尤其是氧化酶。综述以对理性设计得到的人工氧化酶的反应中间体进行研究的进展,发现金属酶活性中心的酪氨酸作为催化反应的关键残基,对于氧化反应的调控非常重要; 而在小分子量骨架蛋白中模拟天然金属酶是一种人工金属酶分子设计的方法,可以用于研究血红素酶外的其他金属酶。

参考文献/References:

[1] LU Y,YEUNG N,SIERACKI N,et al.Design of functional metalloproteins[J].Nature,2009,460:855-862.
[2] ZHU M,WANG C,SUN W,et al.Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J].Metab Eng,2018,45:43-50.
[3] MATE D M,ALCALDE M.Laccase engineering:from rational design to directed evolution[J].Biotechnol Adv,2015,33(1):25-40.
[4] PETRIK I D,LIU J,LU Y.Metalloenzyme design and engineering through strategic modifications of native protein scaffolds[J].Curr Opin Chem Biol,2014,19:67-75.
[5] KENDREW J C,DKCKERSON R E,STRANDBERG B E,et al.Structure of myoglobin:a three-dimensional fourier synthesis at 2 ? resolution[J].Nature,1960,185:422-427.
[6] LIN Y,WANG J,LU Y.Functional tuning and expanding of myoglobin by rational protein design[J].Sci China Chem,2014,57(3):346-355.
[7] YUSA K,KEIJI S.Oxidation of oxymyoglobin to metmyoglobin with hydrogen peroxide:involvement of ferryl intermediate[J].Biochemistry,1987,26(21):6684-6688.
[8] MATSUI T,OZAKI SI,LIONG E,et al.Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide[J].J Biol Chem,1999,274(5):2838-2844.
[9] GUO W W,WAN D,LIAO L F,et al.Unusual peroxidase activity of a myoglobin mutant with two distal histidines[J].Chin Chem Lett,2012,23(6):741-744.
[10] DONG S S,DU K J,YOU Y,et al.Peroxidase-like activity of L29H myoglobin with two cooperative distal histidines on electrode using O2 as an oxidant[J].J Electroanal Chem,2013,708:1-6.
[11] WU L B,DU K J,NIE C M,et al.Peroxidase activity enhancement of myoglobin by two cooperative distal histidines and a channel to the heme pocket[J].J Mol Catal B:Enzymatic,2016,134:367-371.
[12] OHASHI M,KOSHIYAMA T,UENO T,et al.Preparation of artificial metalloenzymes by insertion of chromium(III)Schiff base complexes into apomyoglobin mutants[J].Angew Chem Int Ed,2003,42(9):1005-1008.
[13] GARNER D K,LIANG L,BARRIOS D A,et al.Covalent anchor positions play an important role in tuning catalytic properties of a rationally designed MnSalen-containing metalloenzyme[J].ACS Catal,2011,1(9):1083-1089.
[14] DAWSON J.Probing structure-function relations in heme-containing oxygenases and peroxidases[J].Science,1988,240:433-439.
[15] DENISOV I G,MAKRIS T M,SLIGAR S G,et al.Structure and chemistry of cytochrome P450[J].Chem Rev,2005,105:2253-2277.
[16] YANG H J,MATSUI T,OZAKI S I,et al.Molecular engineering of myoglobin:influence of residue 68 on the rate and the enantioselectivity of oxidation reactions catalyzed by H64D/V68X myoglobin[J].Biochemistry,2003,42(34):10174-10181.
[17] PFISTER T D,OHKI T,UENO T,et al.Monooxygenation of an aromatic ring by F43W/H64D/V68I myoglobin mutant and hydrogen peroxide:myoglobin mutants as a model for P450 hydroxylation chemistry[J].J Biol Chem,2005,280(13):12858-12866.
[18] PAWATE A S,MORGAN J,NAMSLAUER A,et al.A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steady-state activity but completely eliminates proton pumping[J].Biochemistry,2002,41(45):13417-13423.
[19] LEE H J,GENNIS R B,?DELROTH P.Entrance of the proton pathway in cbb3-type heme-copper oxidases[J].Proc Natl Acad Sci USA,2011,108(43):17661-17666.
[20] LIU X,YU Y,HU C,et al.Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase[J].Angew Chem Int Ed,2012,51(18):4312-4316.
[21] SIGMAN J A,KWOK B C,LU Y.From myoglobin to heme-copper oxidase:design and engineering of a CuB center into sperm whale myoglobin[J].J Am Chem Soc,2000,122(34):8192-8196.
[22] MINER K D,MUKHERJEE A,GAO Y G,et al.A designed functional metalloenzyme that reduces O2 to H2O with over one thousand turnovers[J].Angew Chem Int Ed,2012,51(23):5589-5592.
[23] YU Y,LV X,LI J,et al.Defining the role of tyrosine and rational tuning of oxidase activity by genetic incorporation of unnatural tyrosine analogs[J].J Am Chem Soc,2015,137(14):4594-4597.
[24] YU Y,ZHOU Q,WANG L,et al.Significant improvement of oxidase activity through the genetic incorporation of a redox-active unnatural amino acid[J].Chem Sci,2015,6(7):3881-3885.
[25] YU Y,MUKHERJEE A,NILGES M J,et al.Direct EPR observation of a tyrosyl radical in a functional oxidase model in myoglobin during both H2O2 and O2 reactions[J].J Am Chem Soc,2014,136(4):1174-1177.
[26] YU Y,CUI C,LIU X,et al.A designed metalloenzyme achieving the catalytic rate of a native enzyme[J].J Am Chem Soc,2015,137(36):11570-11573.
[27] MUKHERJEE S,MUKHERJEE A,BHAGI-DAMODARAN A,et al.A biosynthetic model of cytochrome c oxidase as an electrocatalyst for oxygen reduction[J].Nat Commun,2015,6:8467.
[28] BRANDENBERG O F,FASAN R,ARNOLD F H.Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions[J].Curr Opin Biotechnol,2017,47:102-111.
[29] SUN Z,LONSDALE R,KONG X D,et al.Reshaping an enzyme binding pocket for enhanced and inverted stereoselectivity:use of smallest amino acid alphabets in directed evolution[J].Angew Chem Int Ed,2015,54(42):12410-12415.
[30] LIU X,KANG F,HU C,et al.A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme[J].Nat Chem,2018,10(12):1201-1206.
[31] DAS R,BAKER D.Macromolecular modeling with Rosetta[J].Annu Rev Biochem,2008,77(1):363-382.
[32] YEUNG N,LIN Y W,GAO Y G,et al.Rational design of a structural and functional nitric oxide reductase[J].Nature,2009,462:1079-1082.
[33] LIN Y W,YEUNG N,GAO Y G,et al.Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin[J].Proc Natl Acad Sci USA,2010,107(19):8581-8586.
[34] ZHOU Q,HU M,ZHANG W,et al.Probing the function of the Tyr-Cys cross-link in metalloenzymes by the genetic incorporation of 3-methylthiotyrosine[J].Angew Chem Int Ed,2013,52(4):1203-1207.
[35] MIRTS E N,PETRIK I D,HOSSEINZADEH P,et al.A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme[J].Science,2018,361:1098-1101.
[36] BHAGI-DAMODARAN A,MICHAEL M A,ZHU Q,et al.Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases[J].Nat Chem,2016,9(3):257-263.
[37] BHAGI-DAMODARAN A,REED J H,ZHU Q,et al.Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase[J].Proc Natl Acad Sci USA,2018,115(24):6195-6200.
[38] WU L B,YUAN H,GAO S Q,et al.Regulating the nitrite reductase activity of myoglobin by redesigning the heme active center[J].Nitric Oxide,2016,57:21-29.

备注/Memo

备注/Memo:
收稿日期:2018-08-31修回日期:2018-12-03
基金项目:国家自然科学基金(21878020、31500641)
作者简介:于洋(1987—),男,山西忻州人,研究员,博士生导师,研究方向:蛋白质设计与酶工程,E-mail:yang_yu@outlook.com
引文格式:于洋.基于肌红蛋白的氧激活蛋白的理性设计[J].生物加工过程,2019,17(1):23-28.
YU Yang.Rational design of oxygen-activating protein based on myoglobin[J].Chin J Bioprocess Eng,2019,17(1):23-28..
更新日期/Last Update: 2019-01-30