|本期目录/Table of Contents|

[1]王崇龙,曹智钦,覃小华,等.大肠杆菌微细胞工厂生产萜类化合物研究进展[J].生物加工过程,2019,17(01):1-7.[doi:10.3969/j.issn.1672-3678.2019.01.001]
 WANG Chonglong,CAO Zhiqin,QIN Xiaohua,et al.A perspective:engineering of Escherichia coli as a microbial cell factory for terpenoids production[J].Chinese Journal of Bioprocess Engineering,2019,17(01):1-7.[doi:10.3969/j.issn.1672-3678.2019.01.001]
点击复制

大肠杆菌微细胞工厂生产萜类化合物研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
17
期数:
2019年01期
页码:
1-7
栏目:
出版日期:
2019-01-30

文章信息/Info

Title:
A perspective:engineering of Escherichia coli as a microbial cell factory for terpenoids production
文章编号:
1672-3678(2019)01-0001-07
作者:
王崇龙曹智钦覃小华李郁梅卫功元
苏州大学 基础医学与生物科学学院, 江苏 苏州 215123
Author(s):
WANG ChonglongCAO ZhiqinQIN XiaohuaLI YumeiWEI Gongyuan
School of Biology and Basic Medical Sciences,Soochow University,Suzhou 215123,China
关键词:
萜类化合物 大肠杆菌 代谢工程 合成生物学 微细胞工厂
分类号:
TS264.4
DOI:
10.3969/j.issn.1672-3678.2019.01.001
文献标志码:
A
摘要:
萜类化合物(terpenoids)是自然界中分布最广泛的天然产物,因其多样的生理活性和经济价值而被人们认识和开发。近年来,代谢工程及合成生物学的发展使得生物合成萜类化合物备受关注。本文中,笔者总结了萜类化合物合成的路线及其在大肠杆菌研究中取得的进展,探讨和展望了可能的发展方向,为大肠杆菌微细胞工厂合成萜类产物的研究提供参考和启示。

参考文献/References:

[1] GEORGE K W,ALONSO-GUTIERREZ J,KEASLING J D,et al.Isoprenoid drugs,biofuels,and chemicals:artemisinin,farnesene,and beyond[J].Adv Biochem Eng Biotechnol,2015,148:355-389.
[2] ZYAD A,TILAOUI M,JAAFARI A,et al.More insights into the pharmacological effects of artemisinin[J].Phytother Res,2018,32(2):216-229.
[3] AJIKUMAR P K,XIAO W H,TYO K E,et al.Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J].Science,2010,330:70-74.
[4] LIU T,KHOSLA C.A balancing act for taxol precursor pathways in E.coli[J].Science,2010,330:44-45.
[5] 孙丽超,李淑英,王凤忠,等.萜类化合物的合成生物学研究进展[J].生物技术通报,2017,33(1):64-75.
[6] 王倩,康振,梁泉峰,等.合成未来:从大肠杆菌的重构看合成生物学的发展[J].生命科学,2011,23(9):844-848.
[7] 杨祖明,李炳志.代谢工程技术方法研究进展[J].生物加工过程,2018,16(1):1-11.
[8] 邵洁,李建华,王凯博,等.植物底盘:天然产物合成生物学研究的新热点[J].生物加工过程,2017,15(5):24-31.
[9] 张中素,杨瑞刚,朱凌云,等.提高微生物合成萜类化合物产量的策略[J].中国生物工程杂志,2017,37(1):97-103.
[10] BIAN G,DENG Z,LIU T.Strategies for terpenoid overproduction and new terpenoid discovery[J].Curr Opin Biotechnol,2017,48:234-241.
[11] FRANK A,GROLL M.The methylerythritol phosphate pathway to isoprenoids[J].Chem Rev,2017,117(8):5675-5703.
[12] LIAO P,HEMMERLIN A,BACH T J,et al.The potential of the mevalonate pathway for enhanced isoprenoid production[J].Biotechnol Adv,2016,34(5):697-713.
[13] DELLAS N,THOMAS S T,MANNING G,et al.Discovery of a metabolic alternative to the classical mevalonate pathway[J].Elife,2013,2:e00672.
[14] GROCHOWSKI L L,XU H,WHITE R H.Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate[J].J Bacteriol,2006,188(9):3192-3198.
[15] 李军玲,罗晓东,赵沛基,等.植物萜类生物合成中的后修饰酶[J].云南植物研究,2009,31(5):461-468.
[16] BANERJEE A,SHARKEY T D.Methylerythritol 4-phosphate(MEP)pathway metabolic regulation[J].Nat Prod Rep,2014,31:1043-1055.
[17] LV X,XU H,YU H.Significantly enhanced production of isoprene by ordered coexpression of genes dxs,dxr,and idi in Escherichia coli[J].Appl Microbiol Biotechnol,2013,97:2357-2365.
[18] ZHAO J,LI Q,SUN T.et al.Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J].Metab Eng,2013,17:42-50.
[19] FARMER W R,LIAO J C.Precursor balancing for metabolic engineering of lycopene production in Escherichia coli[J].Biotechnol Prog,2001,17(1):57-61.
[20] LIU H,SUN Y,RAMOS K R,et al.Combination of Entner-Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli[J].PLoS ONE,2013,8:e83290.
[21] LIU H,WANG Y,TANG Q,et al.MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli[J].Microb Cell Fact,2014,13:135.
[22] ZHOU J,YANG L,WANG C,et al.Enhanced performance of the methylerythritol phosphate pathway by manipulation of redox reactions relevant to IspC,IspG,and IspH[J].J Biotechnol,2017,248:1-8.
[23] ZHOU K,ZOU R,STEPHANOPOULOS G,et al.Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production[J].PLoS ONE,2012,7:e47513.
[24] ZOU R,ZHOU K,STEPHANOPOULOS G,et al.Combinatorial engineering of 1-deoxy-D-xylulose 5-phosphate pathway using cross-lapping in vitro assembly(CLIVA)method[J].PLoS ONE,2013,8:e79557.
[25] LI Q,FAN F,GAO X,et al.Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli[J].Metab Eng,2017,44:13-21.
[26] KING J R,WOOLSTON B M,STEPHANOPOULOS G.Designing a new entry point into isoprenoid metabolism by exploiting fructose-6-phosphate aldolase side reactivity of Escherichia coli[J].ACS Synth Biol,2017,6(7):1416-1426.
[27] MARTIN V J,PITERA D J,WITHERS S T,et al.Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J].Nat Biotechnol,2003,21:796-802.
[28] PERALTA-YAHYA P P,OUELLET M,CHAN R,et al.Identification and microbial production of a terpene-based advanced biofuel[J].Nat Commun,2011,2:483.
[29] YANG L,WANG C,ZHOU J,et al.Combinatorial engineering of hybrid mevalonate pathways in Escherichia coli for protoilludene production[J].Microb Cell Fact,2016,15:14.
[30] ZHU F,ZHONG X,HU M,et al.In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli[J].Biotechnol Bioeng,2014,111(7):1396-1405.
[31] CHOU H H,KEASLING J D.Programming adaptive control to evolve increased metabolite production[J].Nat Commun,2013,4:2595.
[32] DAHL R H,ZHANG F,ALONSO-GUTIERREZ J,et al.Engineering dynamic pathway regulation using stress-response promoters[J].Nat Biotechnol,2013,31(11):1039-1046.
[33] SHEN H J,CHENG B Y,ZHANG Y M,et al.Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis[J].Metab Eng,2016,38:180-190.
[34] KIM E M,WOO H M,TIAN T,et al.Autonomous control of metabolic state by a quorum sensing(QS)-mediated regulator for bisabolene production in engineered E.coli[J].Metab Eng,2017,44:325-336.
[35] HAN G H,KIM S K,YOON P K,et al.Fermentative production and direct extraction of(-)-α-bisabolol in metabolically engineered Escherichia coli[J].Microb Cell Fact,2016,15:185.
[36] WHITED G M,FEHER F J,BENKO D A,et al.Development of a gas-phase bioprocess for isoprenemonomer production using metabolic pathway engineering[J].Ind Biotechnol,2010,6(3):152-163.
[37] KANG A,GEORGE K W,WANG G,et al.Isopentenyl diphosphate(IPP)-bypass mevalonate pathways for isopentenol production[J].Metab Eng,2016,34:25-35.
[38] YANG C,GAO X,JIANG Y,et al.Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli[J].Metab Eng,2016,37:79-91.
[39] LEONARD E,AJIKUMAR P K,THAYER K,et al.Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control[J].Proc Natl Acad Sci USA,2010,107:13654-13659.
[40] YOSHIKUNI Y,FERRIN T E,KEASLING J D.Designed divergent evolution of enzyme function[J].Nature,2006,440:1078-1082.
[41] BIAN G,HAN Y,HOU A,et al.Releasing the potential power of terpene synthases by a robust precursor supply platform[J].Metab Eng,2017,42:1-8.
[42] WANG C,PARK J E,CHOI E S,et al.Farnesol production in Escherichia coli through the construction of a farnesol biosynthesis pathway:application of PgpB and YbjG phosphatases[J].Biotechnol J,2016.11:1291-1297
[43] CHOU H H,KEASLING J D.Synthetic pathway for production of five-carbon alcohols from isopentenyl diphosphate[J].Appl Environ Microbiol,2012,78:7849-7855.
[44] WITHERS S T,GOTTLIEB S S,LIEU B,et al.Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity[J].Appl Environ Microbiol,2007,73(19):6277-6283.
[45] GEORGE K W,THOMPSON M G,KANG A,et al.Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E.coli[J].Sci Rep,2015,5:11128.
[46] CHANG M C,EACHUS R A,TRIEU W,et al.Engineering Escherichia coli for production of functionalized terpenoids using plant P450s[J].Nat Chem Biol,2007,3(5):274-277.
[47] BIGGS B W,LIM C G,SAGLIANI K,et al.Overcoming heterologous protein interdependency to optimize P450-mediated taxol precursor synthesis in Escherichia coli[J].Proc Natl Acad Sci USA,2016,113:3209-3214.
[48] JOHNS N I,BLAZEJEWSKI T,GOMES A L,et al.Principles for designing synthetic microbial communities[J].Curr Opin Microbiol,2016,31:146-153.
[49] GOH W W B,WONG L.Integrating networks and proteomics:moving forward[J].Trends Biotechnol,2016,34:951-959.
[50] CAMPBELL K,XIA J,NIELSEN J.The impact of systems biology on bioprocessing[J].Trends Biotechnol,2017,35:1156-1168.
[51] 陈修来,高聪,刘佳,等.微生物代谢路径的优化与调控[J].生物加工过程,2017,15(5):1-8.
[52] WANG C,YOON S H,SHAH A A,et al.Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway[J].Biotechnol Bioeng,2010,107:421-429.
[53] DUNLOP M J,DOSSANI Z Y,SZMIDT H L,et al.Engineering microbial biofuel tolerance and export using efflux pumps[J].Mol Syst Biol,2011,7:487.
[54] TURNER W J,DUNLOP M J.Trade-offs in improving biofuel tolerance using combinations of efflux pumps[J].ACS Synth Biol,2015,4(10):1056-1063.
[55] DOSHI R,NGUYEN T,CHANG G.Transporter-mediated biofuel secretion[J].Proc Natl Acad Sci USA,2013,110:7642-7647.
[56] WU T,YE L,ZHAO D,et al.Membrane engineering:a novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli[J].Metab Eng,2017,43:85-91.

相似文献/References:

[1]张琛,李环,吴圆丽,等.采用pHsh载体克隆与表达N-乙酰鸟氨酸脱乙酰基酶基因[J].生物加工过程,2012,10(05):67.[doi:10.3969/j.issn.1672-3678.2012.05.013]
 ZHANG Chen,LI Huan,WU Yuanli,et al.Cloning and high-level active expression of N-acetyl-L-ornithine deacetylase gene[J].Chinese Journal of Bioprocess Engineering,2012,10(01):67.[doi:10.3969/j.issn.1672-3678.2012.05.013]
[2]宋灿辉,张伟国.敲除aceE基因对大肠杆菌生长和丙酮酸代谢的影响[J].生物加工过程,2013,11(06):15.[doi:10.3969/j.issn.1672-3678.2013.06.003]
 SONG Canhui,ZHANG Weiguo.Effects of aceE gene knockout on growing and pyruvate biosynthesis of E.coli[J].Chinese Journal of Bioprocess Engineering,2013,11(01):15.[doi:10.3969/j.issn.1672-3678.2013.06.003]
[3]张旭,李宜奎,祁庆生.大肠杆菌碳分解代谢抑制及混合C源共利用的研究进展[J].生物加工过程,2014,12(01):109.[doi:10.3969/j.issn.1672-3678.2014.01.016]
 ZHANG Xu,LI Yikui,QI Qingsheng.Carbon catabolite repression and co-utilization of mixed carbon sources in Escherichia coli[J].Chinese Journal of Bioprocess Engineering,2014,12(01):109.[doi:10.3969/j.issn.1672-3678.2014.01.016]
[4]郑璐,柏中中,许婷婷,等.D-乳酸高产菌菊糖芽胞乳杆菌Y2-8磷酸果糖激酶基因在大肠杆菌中的克隆和表达[J].生物加工过程,2014,12(04):37.[doi:10.3969/j.issn.1672-3678.2014.04.008]
 ZHENG Lu,BAI Zhongzhong,XU Tingting,et al.Cloning and expression of phosphofructokinase gene from Sporolactobacillus inulinus in Escherichia coli[J].Chinese Journal of Bioprocess Engineering,2014,12(01):37.[doi:10.3969/j.issn.1672-3678.2014.04.008]
[5]袁春伟,何艳春,张胜利,等.重组大肠杆菌BL21(pUC19-Hyp)产羟脯氨酸的补料分批培养[J].生物加工过程,2014,12(04):43.[doi:10.3969/j.issn.1672-3678.2014.04.009]
 YUAN Chunwei,HE Yanchun,ZHANG Shengli,et al.Production of hydroxyproline by fed-batch culture of novel recombinant Escherichia coli BL21(pUC19-Hyp)[J].Chinese Journal of Bioprocess Engineering,2014,12(01):43.[doi:10.3969/j.issn.1672-3678.2014.04.009]
[6]梁丽亚,刘嵘明,苟冬梅,等.共表达烟酸转磷酸核糖激酶和丙酮酸羧化酶对大肠杆菌NZN111产丁二酸的影响[J].生物加工过程,2014,12(04):49.[doi:10.3969/j.issn.1672-3678.2014.04.010]
 LIANG Liya,LIU Rongming,GOU Dongmei,et al.Effects of co-expression of nicotinic acid phosphoribosyltransferase and pyruvate carboxylase on succinic acid production in Escherichia coli NZN111[J].Chinese Journal of Bioprocess Engineering,2014,12(01):49.[doi:10.3969/j.issn.1672-3678.2014.04.010]
[7]陈旭,梁丽亚,刘嵘明,等.共表达磷酸烯醇式丙酮酸羧激酶和烟酸转磷酸核糖激酶提高重组大肠杆菌发酵木糖产丁二酸[J].生物加工过程,2015,13(01):17.[doi:10.3969/j.issn.1672-3678.2015.01.004]
 CHEN Xu,LIANG Liya,LIU Rongming,et al.Enhancing succinate production from xylose by co-expression of phosphoenolpyruvate carboxykinase and nicotinic-acid phosphonbosyltransferase in recombinant Escherichia coli[J].Chinese Journal of Bioprocess Engineering,2015,13(01):17.[doi:10.3969/j.issn.1672-3678.2015.01.004]
[8]冯红茹,杨建明,秦利,等.β-蒎烯合成酶(QH6)在大肠杆菌中的表达及其产β-蒎烯的研究[J].生物加工过程,2015,13(01):28.[doi:10.3969/j.issn.1672-3678.2015.01.006]
 FENG Hongru,YANG Jianming,QIN Li,et al.Expression of β-pinene synthase(QH6)in Escherichia coli for the biosynthesis of β-pinene[J].Chinese Journal of Bioprocess Engineering,2015,13(01):28.[doi:10.3969/j.issn.1672-3678.2015.01.006]
[9]马红叶,郑仁朝,赵川东,等.重组大肠杆菌产疏绵状嗜热丝孢菌脂肪酶分批补料发酵工艺[J].生物加工过程,2015,13(02):9.[doi:10.3969/j.issn.1672-3678.2015.02.002]
 MA Hongye,ZHENG Renchao,ZHAO Chuandong,et al.Optimization of fed-batch fermentation for Thermomyces lanuginosus lipase production with recombinant Eschericha coli[J].Chinese Journal of Bioprocess Engineering,2015,13(01):9.[doi:10.3969/j.issn.1672-3678.2015.02.002]
[10]张汉文,刘嵘明,梁丽亚,等.大肠杆菌AFP111利用玉米粉全水解液厌氧发酵合成丁二酸[J].生物加工过程,2015,13(03):14.[doi:10.3969/j.issn.1672-3678.2015.03.003]
 ZHANG Hanwen,LIU Rongming,LIANG Liya,et al.Succinic acid production from complete hydrolysate of corn flour by anaerobic fermentation with Escherichia coli AFP111[J].Chinese Journal of Bioprocess Engineering,2015,13(01):14.[doi:10.3969/j.issn.1672-3678.2015.03.003]

备注/Memo

备注/Memo:
收稿日期:2018-10-03修回日期:2018-11-12
基金项目:国家自然科学基金面上项目(21878198); 中国博士后科学基金面上项目(2017M610350); 苏州大学医学部学生课外研究项目
作者简介:王崇龙(1981—),男,山东日照人,博士,副教授,研究方向:代谢工程、合成生物学,E-mail:clwang@suda.edu.cn
引文格式:王崇龙,曹智钦,覃小华,等.大肠杆菌微细胞工厂生产萜类化合物研究进展[J].生物加工过程,2019,17(1):1-7.
WANG Chonglong,CAO Zhiqin,QIN Xiaohua,et al.A perspective:engineering of Escherichia coli as a microbial cell factory for terpenoids production[J].Chin J Bioprocess Eng,2019,17(1):1-7..
更新日期/Last Update: 2019-01-30