|本期目录/Table of Contents|

[1]赵勇,李欢,张昭寰,等.食源性致病菌耐药机制研究进展[J].生物加工过程,2018,16(02):1-10.[doi:10.3969/j.issn.1672-3678.2018.02.001]
 ZHAO Yong,LI Huan,ZHANG Zhaohuan,et al.Progress in studying antimicrobial resistance of foodborne pathogenic bacteria[J].Chinese Journal of Bioprocess Engineering,2018,16(02):1-10.[doi:10.3969/j.issn.1672-3678.2018.02.001]
点击复制

食源性致病菌耐药机制研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
16
期数:
2018年02期
页码:
1-10
栏目:
出版日期:
2018-03-30

文章信息/Info

Title:
Progress in studying antimicrobial resistance of foodborne pathogenic bacteria
文章编号:
1672-3678(2018)02-0001-10
作者:
赵勇123李欢1张昭寰1刘海泉123潘迎捷123
1.上海海洋大学 食品学院,上海 201306; 2. 上海水产品加工及贮藏工程技术研究中心,上海 201306; 3. 农业部水产品贮藏保鲜质量安全风险评估实验室(上海),上海 201306
Author(s):
ZHAO Yong 123LI Huan1ZHANG Zhaohuan1LIU Haiquan123PAN Yingjie 123
1.College of Food Science and Technology,Shanghai Ocean University,Shanghai 201306,China; 2.Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation,Shanghai 201306,China; 3.Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation(Shanghai), Ministry of Agriculture,Shanghai 201306,China
关键词:
食源性致病菌 耐药机制 食品安全 风险控制
分类号:
Q78
DOI:
10.3969/j.issn.1672-3678.2018.02.001
文献标志码:
A
摘要:
食源性致病菌是危害食品安全与人体健康的关键因素,而细菌耐药性的不断出现与传播,更加剧了食源性致病菌的潜在风险,成为全球普遍关注的公共卫生焦点问题。本文中,笔者首先综述4种主要的细菌耐药机制:降低细胞膜通透性机制、外排泵机制、药物靶标位点突变机制以及酶解作用机制。在此基础之上,系统回顾了常见食源性致病菌耐药机制的研究进展,并对食源性致病菌耐药机制进一步的研究方向进行了展望,以期为食源性致病菌耐药机制的深入研究提供基础资料,为食源性致病菌耐药性风险的控制提供科学依据。

参考文献/References:

[1] VELUSAMY V,ARSHAK K,KOROSTYNSKA O,et al.An overview of foodborne pathogen detection:in the perspective of biosensors[J].Biotechnol Adv,2010,28(2):232-254.
[2] WHO.Second formal meeting of the Foodborne Disease Burden Epidemiology Reference Group(FERG):appraising the evidence and reviewing initial results[EB/OL].[2017-06-05].http://www.who.int/foodsafety/publications/fergz/en/(2009).
[3] DAVIES J,DAVIES D.Origins and evolution of antimicrobial resistance[J].Microbiol Mol Biol Rev,2010,74(3):417-433.
[4] JEAN S S,HSUEH P R.High burden of antimicrobial resistance in Asia[J].Int J Antimicrob Agents,2011,37(4):291-295.
[5] 娄阳,张昭寰,肖莉莉,等.食品源抗生素抗性基因的来源与分布状况研究进展[J].食品工业科技,2015,36(12):368-374.
[6] World Economic Forum.Global Risks 2014 Report[EB/OL].[2017-05-29].http://www3.weforum.org/docs/WEF Global Risks Report_2014.pdf.
[7] World Health Organization.Antimicrobial resistance:global report on surveillance 2014[EB/OL].[2017-05-29].http://www.who.int/drugresistance/documents/surveillancereport/en/(2014).
[8] HAMPTON T.Report reveals scope of US antibiotic resistance threat[J].JAMA,2013,310(16):1661-1663.
[9] 张天宇,谢建平,王明贵.抗生素耐药研究领域的机遇和挑战[J].遗传,2016,38(10):857-858.
[10] BLAIR J M A,WEBBER M A,BAYLAY A J,et al.Molecular mechanisms of antimicrobial resistance[J].Nat Rev Microbiol,2015,13(1):42-51.
[11] ALLEN H K,DONATO J,WANG H H,et al.Call of the wild:antimicrobial resistance genes in natural environments[J].Nat Rev Microbiol,2010,8(4):251-259.
[12] LI X Z,ELKINS C A,ZGURSKAYA H I.Efflux-mediated antimicrobial resistance in bacteria:mechanisms,regulation and clinical implications[J].Springer International Publishing,2016,56(1):20-51.
[13] PIDDOCK L J V.Multidrug-resistance efflux pumps:not just for resistance[J].Nat Rev Microbiol,2006,4(8):629-636.
[14] FLETCHER J I,HABER M,HENDERSON M J,et al.ABC transporters in cancer:more than just drug efflux pumps[J].Nat Rev Cancer,2010,10(2):147-156.
[15] HSIAO A,TOY T,SEO H J,et al.Interaction between Salmonella and Schistosomiasis:a review[J].PLoS Pathog,2016,12(12):e1005928.
[16] PARRY C M.Antimicrobial drug resistance in Salmonella enterica[J].Curr Opin Infect Dis,2003,16(5):467-472.
[17] HUANG D B,DUPONT H L.Problem pathogens:extra-intestinal complications of Salmonella enterica serotype Typhi infection[J].Lancet Infect Dis,2005,5(6):341-348.
[18] FRESNO M,BARRETO M,GUTIERREZ S,et al.Serotype-associated polymorphisms in a partial rpoB gene sequence of Salmonella enterica[J].Can J Microbiol,2014,60(3):177-181.
[19] WHITE D G,DATTA A,MCDERMOTT P,et al.Antimicrobial susceptibility and genetic relatedness of Salmonella serovars isolated from animal-derived dog treats in the USA[J].J Antimicrobiol Chemoth,2003,52(5):860-863.
[20] AARESTRUP F M,HENDRIKSEN R S,LOCKETT J,et al.International spread of multidrug-resistant Salmonella Schwarzengrund in food products[J].Emerg Infect Dis,2007,13(5):726-731.
[21] BRICHTA-HARHAY D M,ARTHUR T M,BOSILEVAC J M,et al.Diversity of multidrug-resistant Salmonella enterica strains associated with cattle at harvest in the United States[J].Appl Environ Microbiol,2011,77(5):1783-1796.
[22] LAI J,WU C,WU C,et al.Serotype distribution and antimicrobial resistance of Salmonella in food-producing animals in Shandong province of China,2009 and 2012[J].Int J Food Microbiol,2014,180:30-38.
[23] HU W S,CHEN H W,ZHANG R Y,et al.The expression levels of outer membrane proteins STM1530 and OmpD,which are influenced by the CpxAR and BaeSR two-component systems,play important roles in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium[J].Antimicrob Agents Chemoth,2011,55(8):3829-3837.
[24] LI X Z,PLéSIAT P,NIKAIDO H.The challenge of efflux-mediated antimicrobial resistance in gram-negative bacteria[J].Clin Microbiol Rev,2015,28(2):337-418.
[25] KEYS C,KEMPER S,KEIM P.Highly diverse variable number tandem repeat loci in the E.coli O157:H7 and O55:H7 genomes for high-resolution molecular typing[J].J Appl Microbiol,2005,98(4):928-940.
[26] BLAIR J M A,BAVRO V N,RICCI V,et al.AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity[J].Proc Natl Acad Sci USA,2015,112(11):3511-3516.
[27] HORIYAMA T,YAMAGUCHI A,NISHINO K.TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium[J].J Antimicrob Chemoth,2010,65(7):1372-1376.
[28] RENSCH U,NISHINO K,KLEIN G,et al.Salmonella enterica serovar Typhimurium multidrug efflux pumps EmrAB and AcrEF support the major efflux system AcrAB in decreased susceptibility to triclosan[J].Int J Antimicrob Agents,2014,44(2):179-180.
[29] GEBREYES W A,THAKUR S.Multidrug-resistant Salmonella enterica serovar Muenchen from pigs and humans and potential interserovar transfer of antimicrobial resistance[J].Antimicrob Agents Chemoth,2005,49(2):503-511.
[30] KAO C Y,CHEN C A,LIU Y F,et al.Molecular characterization of antimicrobial susceptibility of Salmonella isolates:first identification of a plasmid carrying qnrD or oqxAB in Taiwan[J].J Microbiol Immunol Infect,2015,50(2):214-223.
[31] PEZZELLA C,RICCI A,DIGIANNATALE E,et al.Tetracycline and streptomycin resistance genes,transposons,and plasmids in Salmonella enterica isolates from animals in Italy[J].Antimicrob Agents Chemoth,2004,48(3):903-908.
[32] GILLINGS M R.Class 1 integrons as invasive species[J].Curr Opin Microbiol,2017,38:10-15.
[33] LETCHUMANAN V,CHAN K G,LEE L H.Vibrio parahaemolyticus:a review on the pathogenesis,prevalence,and advance molecular identification techniques[J].Front Microbiol,2014,5:705.
[34] HUBBARD T P,CHAO M C,ABEL S,et al.Genetic analysis of Vibrio parahaemolyticus intestinal colonization[J].Proc Natl Acad Sci USA,2016,113(22):6283-6288.
[35] XIE T,XU X,WU Q,et al.Prevalence,molecular characterization,and antimicrobial susceptibility of Vibrio parahaemolyticus from ready-to-eat foods in China[J].Front Microbiol,2016,7:549.
[36] LOU Y,LIU H,ZHANG Z,et al.Mismatch between antimicrobial resistance phenotype and genotype of pathogenic Vibrio parahaemolyticus isolated from seafood[J].Food Control,2016,59:207-211.
[37] BOINAPALLY K,JIANG X.Comparing antimicrobial resistance in commensal and pathogenic bacteria isolated from wild-caught South Carolina shrimps vs.farm-raised imported shrimps[J].Can J Microbiol,2007,53(7):919-924.
[38] XIE T,WU Q,ZHANG J,et al.Comparison of Vibrio parahaemolyticus isolates from aquatic products and clinical by antimicrobial susceptibility,virulence,and molecular characterization[J].Food Control,2017,71:315-321.
[39] LI H,TANG R,LOU Y,et al.A comprehensive epidemiological research for clinical Vibrio parahaemolyticus in Shanghai[J].Front Microbiol,2017,8:1043.
[40] CHEN J,MORITA Y,HUDA M N,et al.VmrA,a member of a novel class of Na+-coupled multidrug efflux pumps from Vibrio parahaemolyticus[J].J Bacteriol,2002,184(2):572-576.
[41] MATSUO T,NAKAMURA K,KODAMA T,et al.Characterization of all RND-type multidrug efflux transporters in Vibrio parahaemolyticus[J].MicrobiologyOpen,2013,2(5):725-742.
[42] TAKETOSHI A,HAMASHIMA H,HASEGAWA H.Isolation of a new drug-resistance plasmid from a strain of Vibrio parahaemolyticus[J].Microbiol Immunol,1985,29(2):103-112.
[43] SPAGNOLETTI M,CECCARELLI D,RIEUX A,et al.Acquisition and evolution of SXT-R391 integrative conjugative elements in the seventh-pandemic Vibrio cholerae lineage[J].mBio,2014,5(4):e01356-14.
[44] CECCARELLI D,SALVIA A M,SAMI J,et al.New cluster of plasmid-located class 1 integrons in Vibrio cholerae O1 and a dfrA15 cassette-containing integron in Vibrio parahaemolyticus isolated in Angola[J].Antimicrob Agents Chemoth,2006,50(7):2493-2499.
[45] RILEY L W.Pandemic lineages of extraintestinal pathogenic Escherichia coli[J].Clin Microbiol Infect,2014,20(5):380-390.
[46] JENSEN B H,OLSEN K E P,STRUVE C,et al.Epidemiology and clinical manifestations of enteroaggregative Escherichia coli[J].Clin Microbiol Rev,2014,27(3):614-630.
[47] TADESSE D A,ZHAO S,TONG E,et al.Antimicrobial drug resistance in Escherichia coli from humans and food animals,United States,1950-2002[J].Emerg Infect Dis,2012,18(5):741-749.
[48] SU H C,YING G G,TAO R,et al.Class 1 and 2 integrons,sul resistance genes and antimicrobial resistance in Escherichia coli isolated from Dongjiang River,South China[J].Environ Pollut,2012,169:42-49.
[49] ZHANG W J,XU X R,SCHWARZ S.et al.Characterization of the IncA/C plasmid pSCEC2 from Escherichia coli of swine origin that harbours the multi resistance gene cfr[J].J Antimicrob Chemoth,2014,69,385-389.
[50] 侯芳,李耘,李湘燕.卫生部全国细菌耐药监测网2010年门诊来源细菌耐药监测[J].中国临床药理学杂志,2011,27(12):899-904.
[51] HOBBS E C,YIN X,PAUL B J,et al.Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antimicrobial resistance[J].Proc Natl Acad Sci USA,2012,109(41):16696-16701.
[52] MATSUMURA K,FURUKAWA S,et al.Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12[J].Biocontrol Sci,2011,16:69-72.
[53] DHANJI H,MURPHY N M,AKHIGBE C,et al.Isolation of fluoroquinolone-resistant O25b:H4-ST131 Escherichia coli with CTX-M-14 extended-spectrum β-lactamase from UK river water[J].J Antimicrob Chemoth,2010,66(3):512-516.
[54] KUMARASAMY K K,TOLEMAN M A,WALSH T R,et al.Emergence of a new antimicrobial resistance mechanism in India,Pakistan,and the UK:a molecular,biological,and epidemiological study[J].Lancet Infect Dis,2010,10(9):597-602.
[55] LIU Y Y,WANG Y,WALSH T R,et al.Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China:a microbiological and molecular biological study[J].Lancet Infect Dis,2016,16(2):161-168.
[56] MARIN M A,FONSECA E L,ANDRADE B N,et al.Worldwide occurrence of integrative conjugative element encoding multidrug resistance determinants in epidemic Vibrio cholerae O1[J].PloS ONE,2014,9(9):e108728.
[57] SAFA A,NAIR G B,KONG R Y C.Evolution of new variants of Vibrio cholerae O1[J].Trends Microbiol,2010,18(1):46-54.
[58] YU L,ZHOU Y,WANG R,et al.Multiple antimicrobial resistance of Vibrio cholerae serogroup O139 in China from 1993 to 2009[J].PloS ONE,2012,7(6):e38633.
[59] KIM H B,WANG M,AHMED S,et al.Transferable quinolone resistance in Vibrio cholerae[J].Antimicrob Agents Chemoth,2010,54(2):799-803.
[60] KITAOKA M,MIYATA S T,UNTERWEGER D,et al.Antimicrobial resistance mechanisms of Vibrio cholerae[J].J Med Microbiol,2011,60(4):397-407.
[61] HUDA N,LEE E W,CHEN J,et al.Molecular cloning and characterization of an ABC multidrug efflux pump,VcaM,in non-O1 Vibrio cholerae[J].Antimicrob Agents Chemoth,2003,47(8):2413-2417.
[62] HUDA M,CHEN J,MORITA Y,et al.Gene cloning and characterization of VcrM,a Na+-coupled multidrug efflux pump,from Vibrio cholerae Non-O1[J].Microbiol Immunol,2003,47(6):419-427.
[63] SMITH K P,KUMAR S,VARELA M F.Identification,cloning,and functional characterization of EmrD-3,a putative multidrug efflux pump of the major facilitator superfamily from Vibrio cholerae O395[J].Arch Microbiol,2009,191(12):903-911.
[64] TAYLOR D L,BINA X R,BINA J E.Vibrio cholerae VexH encodes a multiple drug efflux pump that contributes to the production of cholera toxin and the toxin co-regulated pilus[J].PLoS ONE,2012,7(5):e38208.
[65] BAKER S.A return to the pre-antimicrobial era[J].Science,2015,347:1064-1066.
[66] CROFTS T S,GASPARRINI A J,DANTAS G.Next-generation approaches to understand and combat the antibiotic resistome[J].Nat Rev Microbiol,2017,15(7):422-434.
[67] CHUA S L,YAM J K,HAO P,et al.Selective labelling and eradication of antimicrobial-tolerant bacterial populations in Pseudomonas aeruginosa biofilms[J].Nat Commun,2016,7:10750.

相似文献/References:

[1]霍胜楠,董海龙,郑世超,等.基于PCR-RFLP技术鉴定常见食源性致病菌[J].生物加工过程,2016,14(06):23.[doi:10.3969/j.issn.1672-3678.2016.06.005]
 HUO Shengnan,Dong Hailong,ZHENG Shichao,et al.Identification of common food-borne pathogens based on PCR-RFLP techniques[J].Chinese Journal of Bioprocess Engineering,2016,14(02):23.[doi:10.3969/j.issn.1672-3678.2016.06.005]

备注/Memo

备注/Memo:
收稿日期:2017-06-30修回日期:2017-12-28
基金项目:国家自然科学基金面上项目(31571917、31671779); 上海市科技兴农重点攻关项目(沪农科攻字2015第4-8号、沪农科攻字2016第1-1号); 上海市教育委员会“曙光计划”(15SG48); 上海市教育委员会科研创新计划(2017-01-07-00-10-E00056)
作者简介:赵勇(1975—),男,湖北英山人,博士,教授,研究方向:食品预测微生物学,E-mail:yzhao@shou.edu.cn
引文格式:赵勇,李欢,张昭寰,等.食源性致病菌耐药机制研究进展[J].生物加工过程,2018,16(2):1-10.
ZHAO Yong,LI Huan,ZHANG Zhaohuan,et al.Progress in studying antimicrobial resistance of foodborne pathogenic bacteria[J].Chin J Bioprocess Eng,2018,16(2):1-10..
更新日期/Last Update: 2018-03-30