|本期目录/Table of Contents|

[1]苏慕,田达,李真,等.磷灰石矿物的微生物改性及其应用[J].生物加工过程,2017,15(04):51-56.[doi:10.3969/j.issn.1672-3678.2017.04.009]
 SU Mu,TIAN Da,LI Zhen,et al.Microbial modification of apatite mineral and its applications[J].Chinese Journal of Bioprocess Engineering,2017,15(04):51-56.[doi:10.3969/j.issn.1672-3678.2017.04.009]
点击复制

磷灰石矿物的微生物改性及其应用()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
15
期数:
2017年04期
页码:
51-56
栏目:
出版日期:
2017-07-30

文章信息/Info

Title:
Microbial modification of apatite mineral and its applications
文章编号:
1672-3678(2017)04-0051-06
作者:
苏慕田达李真胡水金
南京农业大学 资源与环境科学学院,江苏 南京 210095
Author(s):
SU MuTIAN DaLI ZhenHU Shuijin
College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095,China
关键词:
磷灰石 溶磷微生物 生物肥料 矿物材料 环境修复
分类号:
P593;Q939.96
DOI:
10.3969/j.issn.1672-3678.2017.04.009
文献标志码:
A
摘要:
磷灰石中储藏着地球上90%以上的磷(P),是一种应用非常广泛的矿物材料,已成为矿物、生物、医学和环境领域的研究热点。然而,磷灰石矿物极低的溶解度限制了其在众多领域的应用效率,同时也是自然界生物地球化学循环中磷素输入的主要限制因子。自然界中的溶磷微生物能促进磷灰石矿物的溶解,提高磷灰石中磷的利用效率。本文中,笔者综述了微生物对磷灰石矿物的改性作用及其在农业、环境领域中的应用,为磷灰石在肥料开发、环境修复、磷化工、生物医学等方面的拓展应用提供借鉴。

参考文献/References:

[1] FILIPPELLI G M.The global phosphorus cycle[M] //RATTAN L,STEWART B A.Soil phosphorus.BocaRaton:CRC Press,2016:1-22.
[2] HUGHES J M,RAKOVAN J.The crystal structure of apatite,Ca5(PO4)3(F,OH,Cl)[M] //KOHN M J,RAKOVAN J,HUGHES J M.Reviews in mineralogy and geochemistry.Chantilly:Mineralogical Society of America,2002:1-12.
[3] SAHAIN M,SCHOONEN A A.Medical mineralogy and geochemistry[M].Chantilly:Mineralogical Society of America,2006:223-282.
[4] ELLIOTT J C.Calcium phosphate biominerals[M] //KOHNM J,RAKOVAN J,HUGHES J M.Reviews in Mineralogy and Geochemistry.Chantilly:Mineralogical Society of America,2002:427-453.
[5] PASTERIS J D.A mineralogical view of apatitic biomaterials[J].Am Mineral,2016,101(12):2594-2610.
[6] WANG L,NANCOLLAS G H.Calcium orthophosphates:crystallization and dissolution[J].Chem Rev,2008,108(11):4628-4669.
[7] DOROZHKIN S V,EPPLE M.Biological and medical significance of calcium phosphates[J].Angew Chem Int Ed,2002,33(47):3130-3146.
[8] 谌书,连宾,郑厚义.磷灰石的微生物风化研究进展[J].矿物岩石地球化学通报,2006,25(增刊1):77-79.
[9] RHEE Y J,HILLIER S,GADD G M.Lead transformation to pyromorphite by fungi[J].Curr Biol,2012,22(3):237-241.
[10] PAN Y M,FLEET M E.Compositions of the apatite-group minerals:substitution mechanisms and controlling factors[M] //KOHNM J,RAKOVAN J,HUGHES J M.Phosphates:geochemical,geobiological,and materials importance.Chantilly:Mineralogical Society of America,2002:13-49.
[11] FEIN J B.Quantifying the effects of bacteria on adsorption reactions in water-rock systems[J].Chem Geol,2000,169(3/4):265-280.
[12] 刘羽,彭明生.磷灰石结构替换的研究进展[J].岩石矿物学杂志,2003,22(4):413-415.
[13] KIM T N,FENG Q L,KIM J O,et al.Antimicrobial effects of metal ions(Ag+,Cu2+,Zn2+)in hydroxyapatite[J].J Mater Sci Mater Med,1998,9(3):129-134.
[14] 胥焕岩,刘羽,石和彬.磷灰石及其对水溶液中Cd2+离子的固定作用[J].矿产保护与利用,2000(4):21-26.
[15] CROSBY C H,BAILEY J V.The role of microbes in the formation of modern and ancient phosphatic mineral deposits[J].Front Microbiol,2012,3:241.
[16] MCCONNELL D.Apatite:its crystal chemistry,mineralogy,utilization,and geologic and biologic occurrences[M].New York:Springer-Verlag,1973.
[17] MATHEW M,TAKAGI S.Structures of biological minerals in dental research[J].J Res Natl Inst Stan,2001,106(6):1035.
[18] REY C,COMBES C,DROUET C,et al.Physico-chemical properties of nanocrystallineapatites:implications for biominerals and biomaterials[J].Mater Sci Eng C,2007,27(2):198-205.
[19] ADCOCK C T,HAUSRATH E M,FORSTER P M.Readily available phosphate from minerals in early aqueous environments on Mars[J].Nat Geosci,2013,6(10):824-827.
[20] CHEN W,WANG Q,MENG S,et al.Temperature-related changes of Ca and P release in synthesized hydroxylapatite,geological fluorapatite,and bone bioapatite[J].Chem Geol,2017,451:183-188.
[21] GUO H,SU J,WEI J,et al.Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering[J].Acta Biomater,2009,5(1):268-278.
[22] DOROZHKINS V.Calcium orthophosphates[J].J Mater Sci,2007,42(4):1061-1095.
[23] LI W,XU W,PARISE J B,et al.Formation of hydroxylapatite from co-sorption of phosphate and calcium by boehmite[J].Geochim Cosmochim Acta,2012,85(2):289-301.
[24] POULTON J L,BRYLA D,KOIDE R T,et al.Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato[J].New Phytol,2002,154(1):255-264.
[25] 吴冬婷,张晓雪,龚振平,等.磷素营养对大豆磷素吸收及产量的影响[J].植物营养与肥料学报,2012,18(3):670-677.
[26] JONES D L,OBURGER E.Solubilization of phosphorus by soil microorganisms[M] //BUNEMANN E,OBERSON A,FROSSARD E.Phosphorus in action:biological processes in soil phosphorus cyclying.Berlin:Springer,2010:169-198.
[27] FAGERIA N K,BALIGAR V C.Improving nutrient use efficiency of annual crops in Brazilian acid soils for sustainable crop production[J].Commun Soil Sci Plan,2001,32(7/8):1303-1319.
[28] MA Q Y,TRAINA S J,LOGAN T J,et al.In situ lead immobilization by apatite[J].Environ Sci Technol,2002,27(9):1803-1810.
[29] LIANG X,KIERANS M,CECI A,et al.Phosphatase-mediated bioprecipitation of lead by soil fungi[J].Environ Microbiol,2015,18(1):219-231.
[30] 刘羽,彭明生.磷灰石在废水治理中的应用[J].安全与环境学报,2001,1(1):9-12.
[31] CORDELL D,DRANGERT J O,WHITE S.The story of phosphorus:global food security and food for thought[J].Global Environ Chang,2009,19(2):292-305.
[32] RIVAS R,PEIX A,MATEOS P F,et al.Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils[J].Plant Soil,2006,287(1):23-33.
[33] LOGANATHAN P,NAIR S.Crop-specific endophytic colonization by a novel,salt-tolerant,N2-fixing and phosphate-solubilizing Gluconacetobacter sp.from wild rice[J].Biotechnol Lett,2003,25(6):497-501.
[34] RIVAS R,TRUJILLO M E,SANCHEZ M,et al.Microbacterium ulmi sp.nov.a xylanolytic,phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra[J].Int J Syst Evol Microbiol,2004,54(2):513-517.
[35] PEIX A,RIVAS R,SANTAREGINA I,et al.Pseudomonas lutea sp.nov.,a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses[J].Int J Syst Evol Microbiol,2004,54:847.
[36] SON H J,PARK G T,CHA M S,et al.Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere[J].Bioresour Technol,2006,97(2):204-210.
[37] LOGANATHAN P,NAIR S.Swaminathania salitolerans gen.nov.,sp nov.,a salt-tolerant,nitrogen-fixing and phosphate-solubilizing bacterium from wild rice(Porteresia coarctata Tateoka)[J].Int J Syst Evol Microbiol,2004,54(Pt 4):1185-1190.
[38] 范丙全.北方石灰性土壤中青霉菌P8(Penicillium oxalicum)活化难溶磷的作用和机理研究[D].北京:中国农业科学,2001.
[39] 李海云,孔维宝,达文燕,等.土壤溶磷微生物研究进展[J].生物学通报,2013,48(7):1-5.
[40] 克伦宾 W E.微生物地球化学[M].北京:地质出版社,1990.
[41] ANTOUN H.Beneficial microorganisms for the sustainable use of phosphates in agriculture[J].Procedia Eng,2012,46(3):62-67.
[42] 张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998,35(1):102-111.
[43] ADEYEMI A,GADD G.Fungal degradation of calcium-,lead- and silicon-bearing minerals[J].Biometals,2005,18(3):269-281.
[44] JAYASINGHEARACHCHI H S,SENEVIRATNE G.Fungal solubilization of rock phosphate is enhanced by forming fungal-rhizobial biofilms[J].Soil Biol Biochem,2006,38(2):405-408.
[45] 陈哲,吴敏娜,秦红灵,等.土壤微生物溶磷分子机理研究进展[J].土壤学报,2009,46(5):925-931.
[46] KUCEY R M N.Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils[J].Can J Soil Sci,1983,63(4):671-678.
[47] CHUNG H,PARK M,MADHAIYAN M,et al.Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea[J].Soil Biol Biochem,2005,37(10):1970-1974.
[48] JORQUERA M,MARTINEZ O,MARUYAMA F,et al.Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria[J].Microbes Environ,2008,23(3):182-191.
[49] 赵小蓉,林启美,李保国.微生物溶解磷矿粉能力与pH及分泌有机酸的关系[J].微生物学杂志,2003,23(3):5-7.
[50] VANDEVIVERE P,KIRCHMAND L.Attachment stimulates exopolysaccharide synthesis by a bacterium[J].Appl Environ Microb,1993,59(10):3280.
[51] WHITELAW M A.Growth promotion of plants inoculated with phosphate-solubilizing fungi[J].Adv Agron,1999,69:99-151.
[52] PEA A,RMN K,JWB S.Inorganic phosphate solubilization by two Penicillium species in solution culture and soil[J].Soil Biol Biochem,1988,20(4):459-464.
[53] 谌书,连宾,刘丛强.一株胶质芽胞杆菌对磷矿石风化作用的实验研究[J].矿物学报,2008,28(1):77-83.
[54] 李元芳.硅酸盐细菌肥料的特性和作用[J].中国土壤与肥料,1994(2):48-48.
[55] KAVANAGH K.Fungal fermentation systems and products[M] //Fungi:biology and applications.Chichester:John Wiley & Sons,Ltd.,2005:89-112.
[56] LI Z,BAI T,DAI L, et al. A study of organic acid production in contrasts between two phosphate solubilizing fungi:Penicillium oxalicum and Aspergillus niger[J].Sci Rep,2016,doi:10.1038/srep25313.
[57] DWIVEDI B S,SINGH V K,DWIVEDI V.Application of phosphate rock,with or without Aspergillus awamori inoculation,to meet phosphorus demands of rice-wheat systems in the Indo-Gangetic plains of India[J].Aust J Exp Agric,2004,44(10):1041-1050.
[58] JONGMANS A G,BREEMEN N V,LUNDSTROM U,et al.Rock-eating fungi[J].Nature,1997,389:682-683.
[59] 郭炜,于洪久,李玉梅,等.解磷微生物的研究现状及展望[J].黑龙江农业科学,2015(10):170-173.
[60] 阎逊初.放线菌的分类和鉴定[M].北京:科学出版社,1992.
[61] 代玉梅,周敏,覃重军.酸性和碱性土壤新分离的放线菌中线型和环型质粒的检测[J].微生物学报,2008,48(2):244-246.
[62] 姜妍,王浩,王绍东,等.微生物菌肥在农业生产中的应用潜力[J].大豆科技,2010(5):25-27.
[63] 冯月红,姚拓,龙瑞军.土壤解磷菌研究进展[J].草原与草坪,2003(1):3-7.
[64] 文娅,赵国柱,周传斌,等.生态工程领域微生物菌剂研究进展[J].生态学报,2011,31(20):6287-6294.
[65] LI Z,WANG F,BAI T,et al.Lead immobilization by geological fluorapatite and fungus Aspergillus niger[J].J Hazard Mater,2016,320:386.
[66] GIAMMAR D E,XIE L Y,PASTERIS J D.Immobilization of lead with nanocrystalline carbonated apatite present in fish bone[J].Environ Eng Sci,2008,25(5):725-736.

备注/Memo

备注/Memo:
收稿日期:2017-03-23
基金项目:江苏省自然科学基金(BK20150683); 国家重点基础研究发展计划(973计划)重大专项(2015CB150504); 中央高校基本业务费重点项目(KYTZ201404); 江苏省双创博士计划; 南京市留学回国人员科技活动择优项目
作者简介:苏慕(1992—),女,河北石家庄人,研究方向:土壤磷的生物地球化学循环; 李真(联系人),副教授,E-mail:lizhen@njau.edu.cn.
更新日期/Last Update: 2017-07-30