|本期目录/Table of Contents|

[1]郁惠蕾,黄磊,倪燕,等.羰基生物还原法合成手性醇的研究进展[J].生物加工过程,2013,11(03):71-82.[doi:10.3969/j.issn.1672-3678.2013.03.013]
 YU Huilei,HUANG Lei,NI Yan,et al.Advances in synthesis of chiral alcohols by carbonyl bioreduction[J].Chinese Journal of Bioprocess Engineering,2013,11(03):71-82.[doi:10.3969/j.issn.1672-3678.2013.03.013]
点击复制

羰基生物还原法合成手性醇的研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
11
期数:
2013年03期
页码:
71-82
栏目:
出版日期:
2013-05-30

文章信息/Info

Title:
Advances in synthesis of chiral alcohols by carbonyl bioreduction
文章编号:
1672-3678(2013)03-0071-12
作者:
郁惠蕾黄磊倪燕许国超许建和
华东理工大学 生物反应器工程国家重点实验室,上海 200237
Author(s):
YU HuileiHUANG LeiNI YanXU GuochaoXU Jianhe
State Key Laboratory of Bioreactor Engineering,East China University of Science and Technology,Shanghai 200237,China
关键词:
不对称还原 生物催化 羰基还原酶 手性醇 基因组挖掘
分类号:
Q939.9
DOI:
10.3969/j.issn.1672-3678.2013.03.013
文献标志码:
A
摘要:
手性醇是合成许多光学活性药物、农用化学品及其他精细化学品的关键手性砌块。羰基生物还原法理论上可实现100%转化率,且反应条件温和,对环境十分友好,被普遍认为是生产手性醇的绿色、高效途径。综述了近年来利用生物信息学、高通量筛选和蛋白质工程的发展对新型、高效生物催化剂开发的影响,特别是利用相关技术手段开发羰基还原酶的进展。

参考文献/References:

[1] Kaluzna I A,Matsuda T,Sewell A K,et al.Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions[J].J Am Chem Soc,2004,126:12827-12832.
[2] Kaluzna I A,Feske B D,Wittayanan W,et al.Stereoselective,biocatalytic reductions of α-chloro-β-keto esters[J].J Org Chem,2005,70:342-345.
[3] Hammond J R,Poston W B,Ghiviriga I,et al.Biocatalytic synthesis towards both antipodes of 3-hydroxy-3-phenylpropanitrile,a precursor to fluoxetine,atomoxetineand nisoxetine[J].Tetrahedron Lett,2007,48:1217-1219.
[4] Xie Y,Xu J H,Xu Y.Isolation of a Bacillus strain producing ketone reductase with high substrate tolerance[J].Bioresour Technol,2010,101:1054-1059.
[5] Ni Y,Li C X,Zhang J,et al.Efficient reduction of ethyl 2-oxo-4-phenylbutyrate at 620 g·L-1 by a bacterial reductase with broad substrate spectrum[J].Adv Synth Catal,2011,353:1213-1217.
[6] Ni Y,Li C X,Ma H M,et al.Biocatalytic properties of a recombinant aldo-keto reductase with broad substrate spectrum and excellent stereoselectivity[J].Appl Microbiol Biotechnol,2011,89:1111-1118.
[7] Ni Y,Li C X,Wang L J,et al.Highly stereoselective reduction of prochiral ketones by a bacterial reducatse coupled with cofactor regeneration[J].Org Biomol Chem,2011,9:5463-5468.
[8] Applegate G A,Cheloha R W,Nelson D L,et al.A new dehydrogenase from Clostridium acetobutylicum for asymmetric synthesis:dynamic reductive kinetic resolution entry into the Taxotère side chain[J].Chem Commun,2011,47:2420-2422.
[9] Nie Y,Xiao R,Xu Y,et al.Novel anti-Prelog stereospecific carbonyl reductases from Candida parapsilosis for asymmetric reduction of prochiral ketones[J].Org Biomol Chem,2011,9:4070-4078.
[10] Pennacchio A,Pucci B,Secundo F,et al.Purification and characterization of a novel recombinant highly enantioselective short-chain NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus[J].Appl Environ Microbiol,2008,74:3949-3958.
[11] Hölsch K,Weuster-Botz D.New oxidoreductases from cyanobacteria:exploring nature’s diversity[J].Enzyme Microb Technol,2010,47:228-235.
[12] Wang L J,Li C X,Ni Y,et al.Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor[J].Bioresour Technol,2011,102:7023-7028.
[13] Ma H M,Yang L L,Ni Y,et al.Stereospecific reduction of methyl o-chlorobenzoylformate at 300 g·L-1without additional cofactor using a carbonyl reductase mined from Candida glabrata[J].Adv Synth Catal,2012,354:1765-1772.
[14] Shen N D,Ni Y,Ma H M,et al.Efficient synthesis of a chiral precursor for angiotensin-converting enzyme(ACE)inhibitors in high space-time yield by a new reductase without external cofactors[J].Org Lett,2012,14(8):1982-1985.
[15] Ma S K,Gruber J,Davis C,et al.A green-by-design biocatalytic process for atorvastatin intermediate[J].Green Chem,2010,12:81-86.
[16] Liang J,Lalonde J,Borup B,et al.Development of a biocatalytic process as an alternative to the(-)-DIP-Cl-mediated asymmetric reduction of a key intermediate of montelukast[J].Org Proc Res Dev,2010,14:193-198.
[17] Fox R J,Davis S C,Mundorff E C,et al.Improving catalytic function by ProSAR-driven enzyme evolution[J].Nat Biotechnol,2007,25:338-344.
[18] Liang J,Mundorff E,Voladri R,et al.Highly enantioselective reduction of a small heterocyclic ketone:biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding(R)-alcohol[J].Org Proc Res Dev,2010,14:188-192.
[19] Bommarius A S,Blum J K,Abrahamson M J.Status of protein engineering for biocatalysts:how to design an industrially useful biocatalyst[J].Curr Opin Chem Biol,2011,15:194-200.
[20] Li H M,Yang Y,Zhu D M,et al.Highly enantioselective mutant carbonyl reductases created via structure-based site-saturation mutagenesis[J].J Org Chem,2010,75:7559-7564.
[21] Zhu D,Yang Y,Majkowicz S,et al.Inverting the enantioselectivity of a carbonyl reductase via substrate-enzyme docking-guided point mutation[J].Org Lett,2008,10:525-528.
[22] Musa M M,Lott N,Laivenieks M,et al.A single pointmutation reverses the enantiopreference of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase[J].ChemCatChem,2009,1(1):89-93.
[23] Machielsen R,Leferink N G H,Hendriks A,et al.Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of(2S,5S)-hexanediol at moderate temperatures[J].Extremophiles,2008,12:587-594.
[24] Asako H,Shimizu M,Itoh N.Engineering of NADPH-dependent aldo-keto reductase from Penicillium citrinum by directed evolution to improve thermostability and enantioselectivity[J].Appl Microbiol Biotechnol,2008,80:805-812.
[25] Zhang R Z,Xu Y,Sun Y,et al.Ser67Asp and His68Asp substitutions in Candida parapsilosis carbonyl reductase alter the coenzyme specificity and enantioselectivity of ketone reduction[J].Appl Environ Microbiol,2009,75:2176-2183.
[26] Campbell E,Wheeldon I R,Banta S.Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior[J].Biotechnol Bioeng,2010,107:763-774.
[27] Bornscheuer U T.Immobilizing enzymes:how to create more suitable biocatalysts[J].Angew Chem Int Ed,2003,42:3336-3337.
[28] Sheldon R A.Enzyme immobilization:the quest for optimum performance[J].Adv Synth Catal,2007,349:1289-1307.
[29] Cuetos A,Valenzuela M L,Lavandera I,et al.Polyphosphazenes as tunable and recyclable supports to immobilize alcohol dehydrogenases and lipases:synthesis,catalytic activity,and recycling effciency[J].Biomacromolecules,2010,11:1291-1297.
[30] Demir A S,Talpur F N,Sopaci S B,et al.Selective oxidation and reduction reactions with cofactor regeneration mediated by galactitol-,lactate-,and formate dehydrogenases immobilized on magnetic nanoparticles[J].Biotechnol,2011,152:176-183.
[31] Liu W,Zhang S,Wang P.Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration[J].J Biotechnol,2009,139:102-107.
[32] Bhattacharyya M S,Singh A,Banerjee U C.Immobilization of intracellular carbonyl reductase from Geotrichum candidum for the stereoselective reduction of 1-naphthyl ketone[J].Bioresour Technol,2010,101:1581-1586.
[33] Itoh N,Nakamura M,Inoue K,et al.Continuous production of chiral 1,3-butanediol using immobilized biocatalysts in a packed bed reactor:promising biocatalysis method with an asymmetric hydrogen-transfer bioreduction[J].Appl Microbiol Biotechnol,2007,75:1249-1256.
[34] Kurbanoglu E B,Zilbeyaz K,Ozdal M,et al.Asymmetric reduction of substituted acetophenones using once immobilized Rhodotorula glutinis cells[J].Bioresour Technol,2010,101:3825-3829.
[35] Kurbanoglu E B,Zilbeyaz K,Kurbanoglu N I,et al.Continuous production of(S)-1-phenylethanol by immobilized cells of Rhodotorula glutinis with a specially designed process[J].Tetrahedron:Asymmetry,2010,21:461-464.
[36] Avni D,Braun S,Lev O,et al.Enzymes and other proteins entrapped in sol-gel materials[J].Chem Mater,1994,6:1605-1614.
[37] Musa M M,Ziegelmann-Fjeld K I,Vieille C,et al.Xerogel-encapsulated W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus performs asymmetric reduction of hydrophobic ketones in organic solvents[J].Angew Chem Int Ed,2007,46:3091-3094.
[38] de Wildeman S M A,Sonker T,Schoemaker H E,et al.Biocatalytic reductions:from lab curiosity to "first choice"[J].Acc Chem Res,2007,40:1260-1266.
[39] Goldberg K,Schroer Kirsten,Lütz S,et al.Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols:Part I.processes with isolated enzymes[J].Appl Microbiol Biotechnol,2007,76:237-248.
[40] Hollmann F,Arends I W C E,Buehler K.Biocatalytic redox reactions for organic synthesis:nonconventional regeneration methods[J].ChemCatChem,2010,2(7):762-782.
[41] Findrik Z,Vasic’-Racki D,Lutz S.Kinetic modeling of acetophenone reduction catalyzed by alcohol dehydrogenase from Thermoanaerobacter sp[J].Biotechnol Lett,2005,27:1087-1095.
[42] Kosjek B,Stampfer W,Pogorevc M,et al.Purification and characterization of a chemotolerant alcohol dehydrogenase applicable to coupled redox reactions[J].Biotechnol Bioeng,2004,86:55-62.
[43] Inoue K,Makino Y,Itoh N.Production of(R)-chiral alcohols by a hydrogen-transfer bioreduction with NADH-dependent Leifsonia alcohol dehydrogenase(LSADH)[J].Tetrahedron:Asymmetry,2005,16:2539-2549.
[44] Liu W,Wang P.Cofator regeneration for sustainable enzyme biosynthesis[J].Biotechnol Adv,2007,25:369-384.
[45] Bommarius A S,Schwarm M,Drauz K.Biocatalysis to amino acid-based chiral pharmaceuticals:examples and perspectives[J].J Mol Catal B:Enzym,1988,5:1-11.
[46] Bommarius A S,Drauz K,Hummel W,et al.Some new developments in reductive amination with cofactor regeneration[J].Biocatalysis,1994,10:37-47.
[47] 宇文伟刚,张梁.羰基还原酶基因与葡萄糖脱氢酶基因在大肠杆菌中的共表达及其在不对称还原产麻黄碱中的初步应用[J].工业微生物,2010,40(3):19-23.
[48] Baik S H,Ide T,Yoshida H,et al.Significantly enhanced stability of glucose dehydrogenase by directed evolution[J].Appl Microbiol Biotechnol,2003,61:329-335.
[49] Vazquez-Figueroa E,Chaparro-Riggers J,Bommarius A S.Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept[J].ChemBioChem,2007,8(18):2295-2301.
[50] Vrtis J M,White A K,Metcalf W W,et al.Phosphite dehydrogenase:a versatile cofactor-regeneration enzyme[J].Angew Chem Int Ed,2002,41:3257-3259.
[51] Mertens R,Greiner L.Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration[J].J Mol Catal B:Enzymatic,2003,24(5):39-52.
[52] Boonstra B,Rathbone D A.Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone[J].Appl Environ Microbiol,2000,66(12):5161-5166.
[53] Zhao H,van der Donk W A.Regeneration of cofactors for use in biocatalysis[J].Curr Opin Biotechnol,2003,14:583-589.
[54] Gröger H,Chamouleau F,Orologas N,et al.Enantioselective reduction of ketones with "designer cells" at high substrate concentrations:highly efficient access to functionalized optically active alcohols[J].Angew Chem Int Ed,2006,45:5677-5681.
[55] Laane C,Boeren S,Vos K,et al.Rules for optimization of biocatalysis in organic solvents[J].Biotechnol Bioeng,1987,30:81-87.
[56] León R,Fernandes P,Pinheiro H M,et al.Whole-cell biocatalysis in organic media[J].Enzyme Microb Technol,1998,23:483-500.
[57] Wu X R,Chen C,Liu N,et al.Preparation of ethyl 3R,5S-6-(benzyloxy)-3,5-dihydroxy-hexanote by recombinant diketoreductase in a biphasic system[J].Bioresour Technol,2011,102:3649-3652.
[58] 杨忠华,曾嵘.水-有机溶剂两相体系中面包酵母不对称还原苯乙酮合成手性苯乙醇的研究[J].高校化学工程学报,2009,23(3):450-454.
[59] de Gonzalo G,Lavandera I,Faber K,et al.Enzymatic reduction of ketones in "micro-aqueous" media catalyzed by ADH-A from Rhodococcus rubber[J].Org Lett,2007,9:2163-2166.
[60] 王普,周丽敏.离子液体中酵母细胞不对称还原合成(R)-3-羟基丁酸乙酯[J].高校化学工程学报,2008,22(5):833-838.
[61] He J Y,Zhou L M,Wang P,et al.Microbial reduction of ethyl acetoacetate to ethyl(R)-3-hydroxybutyrate in an ionic liquid containing system[J].Process Biochem,2009,44:316-321.
[62] Kohlmanna C,Robertza N,Leuchsa S,et al.Ionic liquid facilitates biocatalytic conversion of hardly water soluble ketones[J].J Mol Catal B:Enzym,2011,68:147-153.
[63] de María P D,Mauger Z.Ionic liquids in biotransformations:from proof-of-concept to emerging deep-eutectic-solvents[J].Curr Opin Chem Biol,2011,15:220-225.
[64] Braütigam S,Bringer-Meyer S,Weuster-Botz D.Asymmetric whole cell biotransformations in biphasic ionic liquid/water-systems by use of recombinant Escherichia coli with intracellular cofactor regeneration[J].Tetrahedron:Asymmetry,2007,18:1883-1887.
[65] Braütigam S,Dennewald D,Schürmann M,et al.Whole-cell biocatalysis:evaluation of new hydrophobic ionic liquids for efficient asymmetric reduction of prochiral ketones[J].Enzyme Microb Technol,2009,45:310-316.
[66] Dennewalda D,Pitnerb W R,Weuster-Botza D.Recycling of the ionic liquid phase in process integrated biphasic whole-cell biocatalysis[J].Process Biochem,2011,46:1132-1137.
[67] Hussain W,Pollard D J,Truppo M,et al.Enzymatic ketone reductions with co-factor recycling:improved reactions with ionic liquid co-solvents[J].J Mol Catal B:Enzym,2008,55:19-29.
[68] Blanchard L A,Brennecke J F.Recovery of organic products from ionic liquids using supercritical carbon dioxide[J].Ind Eng Chem Res,2001,40:287-292.
[69] Cantone S,Hanefeld U,Basso A.Biocatalysis in non-conventional media:ionic liquids,supercritical fluids and the gas phase[J].Green Chem,2007,9:954-971.
[70] Harada T,Kubota Y,Kamitanaka T,et al.A novel method for enzymatic asymmetric reduction of ketones in a supercritical carbon dioxide/water biphasic system[J].Tetrahedron Lett,2009,50:4934-4936.
[71] Hernáiz M J,Alcántara A R,Garc a J I,et al.Applied biotransformations in green solvents[J].Chem Eur J,2010,16:9422-9437.
[72] Kansal H,Banerjee U C.Enhancing the biocatalytic potential of carbonyl reductase of Candida viswanathii using aqueous-organic solvent system[J].Bioresour Technol,2009,100:1041-1047.
[73] Wolfson A,Dlugya C,Tavora D,et al.Baker’s yeast catalyzed asymmetric reduction in glycerol[J].Tetrahedron:Asymmetry,2006,17:2043-2045.
[74] Andrade L H,Piovan L,Pasquini M D.Improving the enantioselective bioreduction of aromatic ketones mediated by Aspergillus terreus and Rhizopus oryzae:the role of glycerol as a co-solvent[J].Tetrahedron:Asymmetry,2009,20:1521-1525.
[75] Hildebrand F,L tz S.Immobilisation of alcohol dehydrogenase from Lactobacillus brevis and its application in a plug-flow reactor[J].Tetrahedron:Asymmetry,2006,17:3219-3225.
[76] Bommarius A S,Riebel B R.Biocatalysis:fundamentals and applications[M].Weinheim:Wiley-VCH; 2004.
[77] Rao N N,Lütz S,Würges K,et al.Continuous biocatalytic processes[J].Org Proc Res Dev,2009,13:607-616.
[78] Schroer K,Mackfeld U,Tan I A W,et al.Continuous asymmetric ketone reduction processes with recombinant Escherichia coli[J].J Biotechnol,2007,132:438-444.
[79] Schroer K,Lütz S.A continuously operated bimembrane reactor process for the biocatalytic production of(2R,5R)-hexanediol[J].Org Proc Res Dev,2009,13:1202-1205.
[80] Valadez-Blanco R,Livingston A G.Enantioselective whole-cell biotransformation of acetophenone to S-phenylethanol by Rhodotorula glutinis:Part II.aqueous-organic systems:emulsion and membrane bioreactors[J].Biochem Eng J,2009,46:54-60.
[81] Kohlmann C,Leuchs S,Greiner L,et al.Continuous biocatalytic synthesis of(R)-2-octanol with integrated product separation[J].Green Chem,2011,13:1430-1436.

相似文献/References:

[1]孟晨璐,张梁,丁重阳,等.构建羰基还原酶基因工程菌生物转化产l-麻黄碱[J].生物加工过程,2009,7(01):29.[doi:006]
 MENG Chen-lu,ZHANG Liang,DING Chong-yang,et al.Construction and application of carbonyl reductase gene engineering strain in biosynthesis of l-ephedrine[J].Chinese Journal of Bioprocess Engineering,2009,7(03):29.[doi:006]
[2]肖美添,张亚武,黄雅燕,等.重组基因工程菌在不对称还原羰基化合物中的应用[J].生物加工过程,2009,7(03):1.
 XIAO Mei-tian,ZHANG Ya-wu,HUANG Ya-yan,et al.Application of recombinant genetic engineering strains in asymmetric reduction of carbonyl compounds[J].Chinese Journal of Bioprocess Engineering,2009,7(03):1.
[3]孙鹏,张文,倪晔,等.羰基还原酶产生菌 SW 2026的产酶条件及其不对称催化还原4′-氯苯乙酮[J].生物加工过程,2009,7(05):19.
 SUN Peng,ZHANG Wen,NI Ye,et al.Enhancement of asymmetric reduction of 4′-chloroacetophenone by optimizing culture conditions of carbonyl reductase-producing strain Candida krusei SW 2026 [J].Chinese Journal of Bioprocess Engineering,2009,7(03):19.
[4]王翔,穆晓清,徐岩,等.葡萄酒酵母不对称还原苯甲酰甲酸合成(R)-扁桃酸[J].生物加工过程,2009,7(05):34.
 WANG Xiang,MU Xiao-qing,XU Yan,et al.Asymmetric reduction of benzoylformic acid into (R)-mendelic acid by whole cell Saccharomyces ellipsoideus catalysis[J].Chinese Journal of Bioprocess Engineering,2009,7(03):34.
[5]杨忠华,王玉,曾嵘,等.利用微生物重组技术促进羰基不对称还原研究进展[J].生物加工过程,2009,7(06):8.
 YANG Zhong-hua,WANG Yu,ZENG Rong,et al.Recent progress of asymmetric reduction of ketones with microbial recombinant technology[J].Chinese Journal of Bioprocess Engineering,2009,7(03):8.
[6]欧玲,谢谚,许建和.还原酶催化羰基不对称还原的应用进展[J].生物加工过程,2011,9(02):72.[doi:doi:10.3969/j.issn.1672-3678.2011.02.015]
 OU Ling,XIE Yan,XU Jianhe.Advances in application of reductases in carbonyl asymmetric reduction[J].Chinese Journal of Bioprocess Engineering,2011,9(03):72.[doi:doi:10.3969/j.issn.1672-3678.2011.02.015]
[7]张蓓花,倪晔,孙志浩.羰基还原酶产生菌Candida ontarioensis制备(R)-2-氯-1-(3-氯苯基)乙醇[J].生物加工过程,2012,10(03):17.[doi:10.3969/j.issn.1672-3678.2012.03.004]
 ZHANG Beihua,NI Ye,SUN Zhihao.Asymmetric synthesis of(R)-2-chloro-1-(3-chlorophenyl)ethanol by carbonyl reductase-producing strain Candida ontarioensis[J].Chinese Journal of Bioprocess Engineering,2012,10(03):17.[doi:10.3969/j.issn.1672-3678.2012.03.004]
[8]张海灵,高秀珍,陈曦,等.米曲霉(Aspergillus oryzae)RIB40中烯酮/烯酯还原酶的异源表达及性质分析[J].生物加工过程,2013,11(01):41.[doi:10.3969/j.issn.1672-3678.2013.01.008]
 ZHANG Hailing,GAO Xiuzhen,CHEN Xi,et al.Heterologous expression and characterization of enoate reductase from Aspergillus oryzae RIB40[J].Chinese Journal of Bioprocess Engineering,2013,11(03):41.[doi:10.3969/j.issn.1672-3678.2013.01.008]
[9]郑裕国,沈寅初.手性医药化学品生物催化合成进展与实践[J].生物加工过程,2013,11(02):24.[doi:10.3969/j.issn.1672-3678.2013.02.004]
 ZHENG Yuguo,SHEN Yinchu.Biocatalysis and green process for chiral pharmaceutical chemicals[J].Chinese Journal of Bioprocess Engineering,2013,11(03):24.[doi:10.3969/j.issn.1672-3678.2013.02.004]
[10]詹伊婧,徐铮,许露,等.L-核糖的生产研究进展[J].生物加工过程,2013,11(05):74.[doi:10.3969/j.issn.1672-3678.2013.05.015]
 ZHAN Yijing,XU Zheng,XU Lu,et al.Research progress in production of L-ribose[J].Chinese Journal of Bioprocess Engineering,2013,11(03):74.[doi:10.3969/j.issn.1672-3678.2013.05.015]

备注/Memo

备注/Memo:
收稿日期:2012-06-26
基金项目:国家自然科学基金(20902023)
作者简介:郁惠蕾(1980—),女,浙江宁波人,博士,副研究员,研究方向: 生物催化与生物转化,E-mail:huileiyu@ecust.edu.cn.
更新日期/Last Update: 2013-03-30