|本期目录/Table of Contents|

[1]张海灵,高秀珍,陈曦,等.米曲霉(Aspergillus oryzae)RIB40中烯酮/烯酯还原酶的异源表达及性质分析[J].生物加工过程,2013,11(01):41-46.[doi:10.3969/j.issn.1672-3678.2013.01.008]
 ZHANG Hailing,GAO Xiuzhen,CHEN Xi,et al.Heterologous expression and characterization of enoate reductase from Aspergillus oryzae RIB40[J].Chinese Journal of Bioprocess Engineering,2013,11(01):41-46.[doi:10.3969/j.issn.1672-3678.2013.01.008]
点击复制

米曲霉(Aspergillus oryzae)RIB40中烯酮/烯酯还原酶的异源表达及性质分析()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
11
期数:
2013年01期
页码:
41-46
栏目:
出版日期:
2008-01-30

文章信息/Info

Title:
Heterologous expression and characterization of enoate reductase from Aspergillus oryzae RIB40
文章编号:
1672-3678(2013)01-0041-06
作者:
张海灵12高秀珍2陈曦2任杰2冯进辉2张同存1吴洽庆2朱敦明2
1. 天津科技大学 生物工程学院,天津 300457; 2. 中国科学院 天津工业生物技术研究所 工业酶国家工程实验室,天津 300308
Author(s):
ZHANG Hailing12GAO Xiuzhen2CHEN Xi2Ren Jie2 FENG Jinhui2ZHANG Tongcun1WU Qiaqing2 ZHU Dunming2
1. College of Biotechnology,Tianjin University of Science & Technology,Tianjin 300457,China; 2. National Engineering Laboratory for Industrial Enzymes,Tianjin Institute of Industrial Biotechnology,Chinese Academy of Sciences,Tianjin 300308,China
关键词:
不对称还原 烯酮/烯酯还原酶 古老黄色酶
分类号:
Q78;Q81
DOI:
10.3969/j.issn.1672-3678.2013.01.008
文献标志码:
A
摘要:
以米曲霉(Aspergillus oryzae)RIB40基因组DNA为模版, 通过PCR扩增其烯酮烯酯还原酶(AspER)基因(asper)后连接到表达载体pET32a(+)上,在大肠杆菌BL21(DE3)中以可溶形式表达。通过Ni-NTA亲和色谱层析纯化后,蛋白纯度提高1.9倍,回收率为60.62%。根据分子筛凝胶层析结果推算,AspER以二聚体形式存在。性质分析表明此酶为依赖于NADPH的氧化还原酶, 最适pH为7.0~8.0,最适温度为40 ℃。对2-环己烯酮Kmkcat值分别为(2.45±0.36)mmol/L和(4.4±0.4)×103 s-1。底物谱分析发现AspER对马来酰亚胺及其衍生物有较高的活性,其中对2-甲基马来酰亚胺的转化率和e.e.值均高于99%。

参考文献/References:

[1] Tuttle J B,Ouellet S G,David W. Organocatalytic transfer hydrogenation of cyclic enones[J] .J Am Chem Soc,2006,128(39):12662-12663.
[2] Ouellet S G,Tuttle J B,David W. Enantioselective organocatalytic hydride reduction[J] .J Am Chem Soc,2005,127(1):32-33.
[3] Williams R,Bruce N.New uses for an old enzyme-the old yellow enzyme family of flavoenzymes[J] .Microbiology,2002,148(6):1607-1614.
[4] Swiderska M A,Stewart J D. Asymmetric bioreductions of β-nitro acrylates as a route to chiral β 2-amino acids[J] .Org Lett,2006,8(26):6131-6133.
[5] Wada M,Yoshizumi A,Noda Y,et al. Production of a doubly chiral compound,(4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone,by two-step enzymatic asymmetric reduction[J] .Appl Environ Microbiol,2003,69(2):933.
[6] Kataoka M,Kotaka A,Hasegawa A,et al. Old yellow enzyme from Candida macedoniensis catalyzes the stereospecific reduction of the C=C bond of ketoisophorone[J] .Biosci Biotechnol Biochem,2002,66(12):2651-2657.
[7] Ohta H,Kobayashi N,Ozaki K. Asymmetric reduction of nitro olefins by fermenting bakers’ yeast[J] .J Org Chem,1989,54(8):1802-1804.
[8] Müller A,Hauer B,Rosche B. Enzymatic reduction of the α,β-unsaturated carbon bond in citral[J] .J Mol Catal B:Enzymatic,2006,38(3/4/5/6):126-130.
[9] Hall M,Hauer B,Stuermer R,et al. Asymmetric whole-cell bioreduction of an [alpha],[beta] -unsaturated aldehyde(citral):competing prim-alcohol dehydrogenase and C=C lyase activities[J] .Tetrahedron:Asymmetry,2006,17(21):3058-3062.
[10] Mangan D,Miskelly I,Moody T S. A three-enzyme system involving an ene-reductase for generating valuable chiral building blocks[J] .Adv Syn Catal,2012,354(11/12):2185-2190.
[11] Brenna E,Gatti F G,Manfredi A,et al. Enoate reductase mediated preparation of(S)-methyl 2-bromobutanoate,a useful key intermediate for the synthesis of chiral active pharmaceutical ingredients[J] .Org Proc Res Dev,2012,16(2):262-268.
[12] Yanto Y,Winkler C K,Lohr S,et al. Asymmetric bioreduction of alkenes using ene-reductases YersER and KYE1 and effects of organic solvents[J] .Org Let,2011,13(10):2540-2543.
[13] Mueller N J,Stueckler C,Hauer B,et al. The substrate spectra of pentaerythritol tetranitrate reductase,morphinone reductase,N-ethylmaleimide reductase and estrogen-binding protein in the asymmetric bioreduction of activated alkenes[J] .Adv Syn Catal,2010,352(2/3):387-394.
[14] 翟光磊,钟良玮.N-末端标签对人硫氧还蛋白反应特点的影响[J].生物物理学报,2009,25(增刊1):371-372.
[15] Chaparro-Riggers J,T Rogers,E Vazquez-Figueroa,et al.Comparison of three enoate reductases and their potential use for biotransformation[J].Adv Syn Catal,2007,349:1521-1531.
[16] Fitzpatric,K T,NAmrhein,Macheroux P.Characterization of YqjM,an old yellow enzyme homolog from Bacillus subtilis involved in the oxidative stress response[J].J Biol Chem,2003,278:19891-19897.
[17] French C E,Bruce N C.Purification and characterization 484 of morphinone reductase from Pseudomonas putida M10[J].Biochem J,1994,301:97-103.
[18] French C,Nicklin S,Bruce N C.Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2[J].J Bacteriol,1996,178:6623-6627.
[19] Brown B J,Z Deng,P A Karplus,et al.On the active site of old yellow enzyme[J].J Biol Chem,1998,273:32753.
[20] Gao X,Ren J,Wu Q,et al.Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei[J].Enzyme Microb Technol,2012,51:26-34.

相似文献/References:

[1]孟晨璐,张梁,丁重阳,等.构建羰基还原酶基因工程菌生物转化产l-麻黄碱[J].生物加工过程,2009,7(01):29.[doi:006]
 MENG Chen-lu,ZHANG Liang,DING Chong-yang,et al.Construction and application of carbonyl reductase gene engineering strain in biosynthesis of l-ephedrine[J].Chinese Journal of Bioprocess Engineering,2009,7(01):29.[doi:006]
[2]肖美添,张亚武,黄雅燕,等.重组基因工程菌在不对称还原羰基化合物中的应用[J].生物加工过程,2009,7(03):1.
 XIAO Mei-tian,ZHANG Ya-wu,HUANG Ya-yan,et al.Application of recombinant genetic engineering strains in asymmetric reduction of carbonyl compounds[J].Chinese Journal of Bioprocess Engineering,2009,7(01):1.
[3]孙鹏,张文,倪晔,等.羰基还原酶产生菌 SW 2026的产酶条件及其不对称催化还原4′-氯苯乙酮[J].生物加工过程,2009,7(05):19.
 SUN Peng,ZHANG Wen,NI Ye,et al.Enhancement of asymmetric reduction of 4′-chloroacetophenone by optimizing culture conditions of carbonyl reductase-producing strain Candida krusei SW 2026 [J].Chinese Journal of Bioprocess Engineering,2009,7(01):19.
[4]王翔,穆晓清,徐岩,等.葡萄酒酵母不对称还原苯甲酰甲酸合成(R)-扁桃酸[J].生物加工过程,2009,7(05):34.
 WANG Xiang,MU Xiao-qing,XU Yan,et al.Asymmetric reduction of benzoylformic acid into (R)-mendelic acid by whole cell Saccharomyces ellipsoideus catalysis[J].Chinese Journal of Bioprocess Engineering,2009,7(01):34.
[5]杨忠华,王玉,曾嵘,等.利用微生物重组技术促进羰基不对称还原研究进展[J].生物加工过程,2009,7(06):8.
 YANG Zhong-hua,WANG Yu,ZENG Rong,et al.Recent progress of asymmetric reduction of ketones with microbial recombinant technology[J].Chinese Journal of Bioprocess Engineering,2009,7(01):8.
[6]欧玲,谢谚,许建和.还原酶催化羰基不对称还原的应用进展[J].生物加工过程,2011,9(02):72.[doi:doi:10.3969/j.issn.1672-3678.2011.02.015]
 OU Ling,XIE Yan,XU Jianhe.Advances in application of reductases in carbonyl asymmetric reduction[J].Chinese Journal of Bioprocess Engineering,2011,9(01):72.[doi:doi:10.3969/j.issn.1672-3678.2011.02.015]
[7]张蓓花,倪晔,孙志浩.羰基还原酶产生菌Candida ontarioensis制备(R)-2-氯-1-(3-氯苯基)乙醇[J].生物加工过程,2012,10(03):17.[doi:10.3969/j.issn.1672-3678.2012.03.004]
 ZHANG Beihua,NI Ye,SUN Zhihao.Asymmetric synthesis of(R)-2-chloro-1-(3-chlorophenyl)ethanol by carbonyl reductase-producing strain Candida ontarioensis[J].Chinese Journal of Bioprocess Engineering,2012,10(01):17.[doi:10.3969/j.issn.1672-3678.2012.03.004]
[8]郁惠蕾,黄磊,倪燕,等.羰基生物还原法合成手性醇的研究进展[J].生物加工过程,2013,11(03):71.[doi:10.3969/j.issn.1672-3678.2013.03.013]
 YU Huilei,HUANG Lei,NI Yan,et al.Advances in synthesis of chiral alcohols by carbonyl bioreduction[J].Chinese Journal of Bioprocess Engineering,2013,11(01):71.[doi:10.3969/j.issn.1672-3678.2013.03.013]
[9]黄和,杨忠华,姚善泾.面包酵母催化羰基不对称还原合成手性醇的研究[J].生物加工过程,2004,2(02):52.[doi:10.3969/j.issn.1672-3678.2004.02.010]
[10]仪明君,宋广亮,朱红军,等.面包酵母催化不对称合成4-氯-(R)-3-羟基丁酸乙酯[J].生物加工过程,2005,3(02):27.[doi:10.3969/j.issn.1672-3678.2005.02.006]
 YI Ming-jun,SONG Guang-liang,ZHU Hong-jun,et al.Asymmetric synthesis of ethyl 4-Chloro-(R)-3-hydroxybutyrate with baker′s yeast[J].Chinese Journal of Bioprocess Engineering,2005,3(01):27.[doi:10.3969/j.issn.1672-3678.2005.02.006]

备注/Memo

备注/Memo:
收稿日期:2012-11-07
基金项目:国家重点基础发展计划(973计划)资助(2011CB710801)
作者简介:张海灵(1987—),女,河北邯郸人,硕士研究生,研究方向:生物催化与绿色化工; 朱敦明(联系人),研究员,E-mail: zhu_dm@tib.cas.cn.
更新日期/Last Update: 2013-01-30