|本期目录/Table of Contents|

[1]张蓓花,倪晔,孙志浩.羰基还原酶产生菌Candida ontarioensis制备(R)-2-氯-1-(3-氯苯基)乙醇[J].生物加工过程,2012,10(03):17-22.[doi:10.3969/j.issn.1672-3678.2012.03.004]
 ZHANG Beihua,NI Ye,SUN Zhihao.Asymmetric synthesis of(R)-2-chloro-1-(3-chlorophenyl)ethanol by carbonyl reductase-producing strain Candida ontarioensis[J].Chinese Journal of Bioprocess Engineering,2012,10(03):17-22.[doi:10.3969/j.issn.1672-3678.2012.03.004]
点击复制

羰基还原酶产生菌Candida ontarioensis制备(R)-2-氯-1-(3-氯苯基)乙醇()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
10
期数:
2012年03期
页码:
17-22
栏目:
出版日期:
2012-05-30

文章信息/Info

Title:
Asymmetric synthesis of(R)-2-chloro-1-(3-chlorophenyl)ethanol by carbonyl reductase-producing strain Candida ontarioensis
文章编号:
1672-3678(2012)03-0017-06
作者:
张蓓花倪晔孙志浩
江南大学 生物工程学院 工业生物技术教育部重点实验室,无锡 214122
Author(s):
ZHANG BeihuaNI YeSUN Zhihao
Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
关键词:
不对称还原 Candida ontarioensis CTAB(R)-2-氯-1-(3-氯苯基)乙醇 通透性处理
分类号:
Q554+.9
DOI:
10.3969/j.issn.1672-3678.2012.03.004
文献标志码:
A
摘要:
从实验室保藏的菌株中筛选获得Candida sp. PT2A,并通过18S rRNA鉴定为安大略假单胞菌Candida ontarioensis。对C.ontarioensis不对称还原合成(R)-2-氯-1-(3-氯苯基)乙醇的发酵产酶条件和转化条件进行优化,确定了最适的发酵产酶条件和转化条件:温度30 ℃,初始pH 6.5,摇床转速180 r/min,菌体质量浓度200 g/L。采用2-氯-1-(3-氯苯基)乙酮质量浓度为10 g/L时,还原反应72 h,(R)-2-氯-1-(3-氯苯基)乙醇的e.e.值为99.9%,产率为99%; 底物质量浓度提高至30 g/L时,产率下降为84.3%。采用十六烷基三甲基溴化铵(CTAB)对C.ontarioensis细胞进行通透性处理(CTAB g/L,4 ℃下处理20 min),在30 g/L底物下反应24 h,产物的e.e.和产率分别达到99.9%和97.5%。

参考文献/References:

[1] Harada H,Hirokawa Y,Suzuki K,et al.Novel and potent human and rat β3-adrenergic receptor agonists containing substituted 3-indolylalkylamines[J].Bioorg Med Chem Lett,2003,13(7):1301-1305.
[2] Patel R N.Synthesis of chiral pharmaceutical intermediates by biocatalysis[J].Coordination Chem Rev,2008,252:659-701.
[3] Pabel J,Hofner G,Wanner K T.Synthesis and resolution of racemic eliprodil and evaluation of the enantiomers of eliprodil as NMDA receptor antagonists[J].Bioorg Med Chem Lett,2000,10(12):1377-1380.
[4] Pollard D J,Woodley J M.Biocatalysis for pharmaceutical intermediates:the future is now[J].Trends Biotech,2007,25(2):66-73.[5] Woodley J M.New opportunities for biocatalysis:making pharmaceutical processes greener[J].Trends Biotech,2008,26(6):321-327.
[6] Zhang W,Ni Y,Sun Z H,et al.Biocatalytic synthesis of ethyl(R)-2-hydroxy-4-phenylbutyrate with Candida krusei SW2026:a practical process for high enantiopurity and product titer[J].Proc Biochem,2009,44:1270-1275.
[7] de Carvalho C.C.Enzymatic and whole cell catalysis:finding new strategies for old processes[J].Biotech Adv,2011,29:75-83.
[8] Wohlgemuth R.Asymmetric biocatalysis with microbial enzymes and cells[J].Curr Opin Microb,2010,13:283-292.
[9] Devocelle M,Mortreux A,Agbossou F,et al.Alternative synthesis of the chiral atypical β-adrenergic phenylethanol aminotetraline agonist SR58611A using enantioselective hydrogenation[J].Tetrahedr Lett,1999,40:4551-4554.
[10] Sawa I,Konishi Y,Maemoto S,et al.Process for producing optically active(-)-2-halo-1-(substituted phenyl)ethanol and(-)-substituted styrene oxide:EP,0493617[P].1992-08-07.
[11] Lin H,Chen Y Z,Xu X Y,et al.Preparation of key intermediates of adrenergic receptor agonists:highly enantioselective production of(R)-α-halohydrins with Saccharomyces cerevisiae CGMCC 2.396[J].J Mol Catal B:Enzymatic,2009,57:1-5.
[12] Shimizu S,Kataoka M,Kizaki N,et al.Process for producing optically active(R)-2-chloro-1-(3’-chlorophenyl)ethanol:EP,1400594[P].2004-03-24.
[13] Kizaki N,Sawa I,Yano M,et al.Purification and characterization of a yeast carbonyl reductase for synthesis of optically active(R)-styrene oxide derivatives[J].Biosci Biotech Biochem,2005,69:79-86.
[14] Itoh N,Matsuda M,Mabuchi M,et al.Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH[J].Eur J Biochem,2002,269:2394-2402.
[15] 胡海军,梁运祥,葛向阳.发酵木糖生产乙醇菌株的筛选与鉴定[J].酿酒,2008,35(2):58-60.
[16] Yu M A,Wei Y M,Zhao L,et al.Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer’s yeast cells in the presence of allyl bromide[J].J Ind Microbiol Biotech,2007,34:151-156.
[17] Cortez D V,Roberto I C.CTAB,Triton X-100 and freezing-thawing treatments of Candida guilliermondii:effects on permeability and accessibility of the glucose-6-phosphate dehydrogenase,xylose reductase and xylitol dehydrogenase enzymes[J].New Biotech,2011,29(2):192-198.

相似文献/References:

[1]孟晨璐,张梁,丁重阳,等.构建羰基还原酶基因工程菌生物转化产l-麻黄碱[J].生物加工过程,2009,7(01):29.[doi:006]
 MENG Chen-lu,ZHANG Liang,DING Chong-yang,et al.Construction and application of carbonyl reductase gene engineering strain in biosynthesis of l-ephedrine[J].Chinese Journal of Bioprocess Engineering,2009,7(03):29.[doi:006]
[2]肖美添,张亚武,黄雅燕,等.重组基因工程菌在不对称还原羰基化合物中的应用[J].生物加工过程,2009,7(03):1.
 XIAO Mei-tian,ZHANG Ya-wu,HUANG Ya-yan,et al.Application of recombinant genetic engineering strains in asymmetric reduction of carbonyl compounds[J].Chinese Journal of Bioprocess Engineering,2009,7(03):1.
[3]孙鹏,张文,倪晔,等.羰基还原酶产生菌 SW 2026的产酶条件及其不对称催化还原4′-氯苯乙酮[J].生物加工过程,2009,7(05):19.
 SUN Peng,ZHANG Wen,NI Ye,et al.Enhancement of asymmetric reduction of 4′-chloroacetophenone by optimizing culture conditions of carbonyl reductase-producing strain Candida krusei SW 2026 [J].Chinese Journal of Bioprocess Engineering,2009,7(03):19.
[4]王翔,穆晓清,徐岩,等.葡萄酒酵母不对称还原苯甲酰甲酸合成(R)-扁桃酸[J].生物加工过程,2009,7(05):34.
 WANG Xiang,MU Xiao-qing,XU Yan,et al.Asymmetric reduction of benzoylformic acid into (R)-mendelic acid by whole cell Saccharomyces ellipsoideus catalysis[J].Chinese Journal of Bioprocess Engineering,2009,7(03):34.
[5]杨忠华,王玉,曾嵘,等.利用微生物重组技术促进羰基不对称还原研究进展[J].生物加工过程,2009,7(06):8.
 YANG Zhong-hua,WANG Yu,ZENG Rong,et al.Recent progress of asymmetric reduction of ketones with microbial recombinant technology[J].Chinese Journal of Bioprocess Engineering,2009,7(03):8.
[6]欧玲,谢谚,许建和.还原酶催化羰基不对称还原的应用进展[J].生物加工过程,2011,9(02):72.[doi:doi:10.3969/j.issn.1672-3678.2011.02.015]
 OU Ling,XIE Yan,XU Jianhe.Advances in application of reductases in carbonyl asymmetric reduction[J].Chinese Journal of Bioprocess Engineering,2011,9(03):72.[doi:doi:10.3969/j.issn.1672-3678.2011.02.015]
[7]张海灵,高秀珍,陈曦,等.米曲霉(Aspergillus oryzae)RIB40中烯酮/烯酯还原酶的异源表达及性质分析[J].生物加工过程,2013,11(01):41.[doi:10.3969/j.issn.1672-3678.2013.01.008]
 ZHANG Hailing,GAO Xiuzhen,CHEN Xi,et al.Heterologous expression and characterization of enoate reductase from Aspergillus oryzae RIB40[J].Chinese Journal of Bioprocess Engineering,2013,11(03):41.[doi:10.3969/j.issn.1672-3678.2013.01.008]
[8]郁惠蕾,黄磊,倪燕,等.羰基生物还原法合成手性醇的研究进展[J].生物加工过程,2013,11(03):71.[doi:10.3969/j.issn.1672-3678.2013.03.013]
 YU Huilei,HUANG Lei,NI Yan,et al.Advances in synthesis of chiral alcohols by carbonyl bioreduction[J].Chinese Journal of Bioprocess Engineering,2013,11(03):71.[doi:10.3969/j.issn.1672-3678.2013.03.013]
[9]黄和,杨忠华,姚善泾.面包酵母催化羰基不对称还原合成手性醇的研究[J].生物加工过程,2004,2(02):52.[doi:10.3969/j.issn.1672-3678.2004.02.010]
[10]仪明君,宋广亮,朱红军,等.面包酵母催化不对称合成4-氯-(R)-3-羟基丁酸乙酯[J].生物加工过程,2005,3(02):27.[doi:10.3969/j.issn.1672-3678.2005.02.006]
 YI Ming-jun,SONG Guang-liang,ZHU Hong-jun,et al.Asymmetric synthesis of ethyl 4-Chloro-(R)-3-hydroxybutyrate with baker′s yeast[J].Chinese Journal of Bioprocess Engineering,2005,3(03):27.[doi:10.3969/j.issn.1672-3678.2005.02.006]

备注/Memo

备注/Memo:
收稿日期:2011-09-20
基金项目:国家重点基础研究发展计划(973计划)资助项目(BK2011150); 江苏省自然科学基金资助项目(SBK201122445); 教育部新世纪优秀人才计划资助项目(NCET-11-0658)
作者简介:张蓓花(1986—),女,陕西西安人,硕士研究生,研究方向:发酵与生物催化; 倪晔(联系人),教授,E-mail:yni@jiangnan.edu.cn.
更新日期/Last Update: 2012-05-30