|本期目录/Table of Contents|

[1]肖美添,张亚武,黄雅燕,等.重组基因工程菌在不对称还原羰基化合物中的应用[J].生物加工过程,2009,7(03):1-8.
 XIAO Mei-tian,ZHANG Ya-wu,HUANG Ya-yan,et al.Application of recombinant genetic engineering strains in asymmetric reduction of carbonyl compounds[J].Chinese Journal of Bioprocess Engineering,2009,7(03):1-8.
点击复制

重组基因工程菌在不对称还原羰基化合物中的应用
(/HTML)
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
7
期数:
2009年03期
页码:
1-8
栏目:
出版日期:
2009-05-30

文章信息/Info

Title:
Application of recombinant genetic engineering strains in asymmetric reduction of carbonyl compounds
文章编号:
1672-3678(2009)03-0001-08
作者:
肖美添12张亚武2黄雅燕2叶静2
1. 华侨大学? 福建省高校工业生物技术重点实验室,厦门361021;
2. 华侨大学? 化工学院,厦门361021
Author(s):
XIAO Mei-tian12 ZHANG Ya-wu2 HUANG Ya-yan2 YE Jing2
1. Key Laboratory for Industrial Biotechnology of Fujian Province, Huaqiao University, Xiamen 361021, China;
2. Institute of Chemical Engineering, Huaqiao University, Xiamen 361021, China
关键词:
重组基因工程菌不对称还原生物转化羰基化合物
分类号:
TQ460.3
文献标志码:
A
摘要:
手性醇是药物合成的重要手性砌块,利用生物催化剂不对称还原羰基化合物是手性醇制备的重要方法。介绍了生物催化还原羰基化合物的反应原理及特点,综述了重组基因工程菌的构建及其在不对称还原羰基化合物中的应用情况,展望了今后研究发展的方向。

参考文献/References:

[1]王胜国, 于国清, 王世文. 不对称催化及其在精细化工中的应用[J]. 工业催化, 2000,8(4): 9-16.
Wang Shengguo, Yu Guoqing, Wang Shiwen. Asymmetric catalysis and its application in fine chemical industry[J]. Industrial catalysis,2000,8(4): 9-16.
[2]Caner H, Groner E, Levy L. Trends in the development of chiral drugs[J]. Drug Discovery Today, 2004,9(3): 105-110.
[3]欧志敏, 吴坚平, 杨立荣, 等. 微生物法还原羰基化合物生产手性醇的研究:生物法合成手性药物的重要手段[J]. 山东农业大学学报:自然科学版,2003,34(3): 459-462.
Ou Zhimin, Wu Jianping, Yang Lirong, et al. Production of chiral alcohol by microbial reduction of carbonyl compound:the important method of biosynthesis in chiral pharmaceutical[J]. J Shandong Agricultural University: Natural Science Edition, 2003,34(3): 459-462.
[4]Gu J X, Li Z Y, Lin G Q. Reductive biotransformation of carbonyl compounds: application offungus, Geotrichum sp. G38 in organic synthesis[J]. Tetrahedron,1993,49(26): 5805-5816.
[5]Wei Z L, Li Z Y, Lin G Q. Anti-prelog microbial reduction of aryl α-halomethyl or α-hydroxymethyl ketones with Geotrichum sp.38[J]. Tetrahedron,1998,54(43): 13059-13072.
[6]Nakamura K, Yamanaka R, Matsudab T, et al. Recent developments in asymmetric reduction of ketones with biocatalysts[J]. Tetrahedron: Asymmetry,2003,14(18): 2659-2681.
[7]Xiao M T, Huang Y Y, Guo Y H, et al. Bioreduction of phenylglyoxylic acid to R-(-)-mandelic acid by Saccharomyces cerevisiae FD11b[J]. Enzym Microb Technol, 2005,37(6): 589-596.
[8]Xiao M T, Huang Y Y, Guo Y H, et al. Study on kinetics of asymmetric reduction of phenylglyoxylic acid to R-(-)-mandelic acid by Saccharomyces cerevisiae FD11b[J]. Chin J Chem Eng, 2006,14(1): 73-80.
[9]Zelinski T, Kula M R. A kinetic study and application of a novel carbonyl reductase isolated from Rhodococcus erythropolis[J]. Bioorg Med Chem,1994,2(6): 421-428.
[10]Rodriguez S, Schroeder K T, Kayser M M, et al. Asymmetric synthesis of α-hydroxy esters and α-alkyl-β-hydroxy esters by recombinant Escherichia coli expressing enzymes from baker′s yeast[J]. J Org Chem, 2000,65(8): 2586-2587.
[11]Ema T, Yagasaki H, Okita N, et al. Asymmetric reduction of ketones using recombinant E. coli cells that produce a versatile carbonyl reductase with highenantioselectivity and broad substrate specificity[J]. Tetrahedron,2006,62(26): 6143-6149.
[12]May O, Nguyen P T, Amold F H. Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine[J]. Nat Biotechnol,2000,18(1): 317-320.
[13]Moore J, Amold F H. Directed evolution of a paranitrobenryl esterase for aqueous-organic solvents[J]. Nat Biotechnol,1996,14(2): 458-467.
[14]Kumamaru T, Suenage H, Mitsuoka M, et al. Vaccination with carbohydrate peptide mimotopes promotes anti-tumor responses[J]. Nat Biotechnol,1998,16(2): 660-665.
[15]Altamirane M M, Blackburn J M, Aguago C. Directed evolution of new catalytic activity using the barrel scaffold[J]. Nature,2000, 403: 617-622.
[16]Makino Y, Inoue K, Dairi T, et al. Engineering of phenylacetaldehyde reductase for efficient substrate conversion in concentrated 2-propanol[J]. Appl Environ Microbiol,2005,71(8): 4713-4720.
[17]Belan A, Bolte J, Fauve A, et al. Use of biological systems for the preparation of chiral molecules:3.application in pheromone synthesis: preparation of sulcatol enantiomers[J]. J Org Chem,1987,52 (2): 256-260.
[18]Wang J C, Sakakibara M, Liu J Q, et al. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding phenylacetaldehyde reductase from styrene assimilating Corynebacterium sp. strain ST-10[J]. Appl Microbiol Biotechnol,1999,52(2): 386-392.
[19]Weckbecker A, Hummel W. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydro-genase[J]. Biotechnol Lett, 2004,26(22): l739-1744.
[20]许娜, 王海燕, 聂尧, 等. 近平滑假丝酵母(R)-专一性羰基还原酶基因的克隆与表达[J]. 微生物学通报, 2006,33(4): 112-118.
Xu Na, Wang Haiyan, Nie Yao, et al. Cloning and expression of gene encoding (R)-specific carbonyl reductase from Candida parapsilosis CCTCC M203011 in Escherichia coli[J]. Microbiology,2006,33(4): 112-118.
[21]聂尧, 徐岩, 王海燕, 等. 重组大肠杆菌不对称还原2-羟基苯乙酮合成(R)-苯基乙二醇[J]. 化工进展,2006, 25(10): 1231-1236.
Nie Yao, Xu Yan, Wang Haiyan, et al. Synthesis of (R)-1-phenyl-1,2-ethanetiol by stereospecific reduction of 2-hydroxyacetophenone using recombinant Escherichia coli expressing (R)-specific carbonyl reductase[J]. Chemical Industry and Engineering Process,2006,25(10): 1231-1236.
[22]Itoh N, Matsuda M, Mabuchi M, et al. Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH [J]. Eur J Biochem, 2002,269(9): 2394-2402.
[23]Zhou B N, Gopalan A S, Middlesworth F V, et al. Stereochemical control of yeast reductions:1. asymmetric synthesis of L-carnitine[J]. J Am Chem Soc,1983,105(18): 5925-5926.
[24]Marino J P, Mcclure M S, Holub D P, et al. Stereocontrolled synthesis of (-)-macrolactin A[J]. J Am Chem Soc, 2002,124(8): 1664-1668.
[25]Jiang B, Liu J F, Zhao S Y. Enantioselective synthesis for the antipodes of slagenins B and C: establishment of absolute stereochemistry[J]. Organic Lett, 2001,3(25): 4011-4013.
[26]Karanewsky D S, Badia M C, Ciosek C P, et al. Phosphorus-containing inhibitors of HMG-CoA reductase. 1.4-[(2-Arylethyl) hydroxyphosphinyl]-3-hydroxybutanoic acids: a new class of cell-selective inhibitors of cholesterol biosynthesis[J]. J Med Chem,1990,33(11): 2952-2956.
[27]Kataoka M, Rohani L P S, Yamamoto K, et al. Enzymatic production of ethyl (R)-4-chloro-3-hydroxybutanoate: asymmetric reduction of ethyl 4-chloro-3-oxobutanoate by an Escherichia coli transformant expressing the aldehyde reductase gene from yeast[J]. Appl Microbiol Biotechnol, l997,48(6): 699-703.
[28]Kataoka M, Rohani L P S, Wada M, et al. Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a cofactor regenerator in a chiral alcohol production system[J]. Biosci Biotechnol Biochem, 1998,62 (1): 167-169.
[29]Kataoka M, Yamamoto K, Kawabata H, et al. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes[J]. App1 Microbio1 Biotechnol,1999,5l (4): 486-490.
[30]Yamamoto H, Matsuyama A, Kobayashi Y. Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-Specific secondary alcohol dehydrogenase[J]. Biosci Biotechnol Biochem,2002,66(2): 481-483.
[31]Yasohara Y, Kizaki N, Hasegawa J, et al. Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase from Candida magnoliae, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate[J]. Biosci Biotechno1 Biochem,2000,64(7): 1430-1436.
[32]Kizaki N, Yasohara Y, Hasegawa J, et al. Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxylbutanoateby Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes[J]. App1 Microbio1 Biotechno1,2001,55(5): 590-595.
[33]Yamamoto H, Matsuyama A, Kobayashi Y. Synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate using fabG-homologues[J].Appl Microbio1 Biotechno1, 2003,61(2): 133-139.
[34]Matsuyama A,Yamamoto H, Kobayashi Y. Practical application of recombinant whole-cell biocatalysts for the manufacturing of pharmaceutical intermediates such as chiral alcohols[J]. Org Process Res Dev,2002,6(4): 558-561.
[35]敬科举, 徐志南, 林建平, 等 . 重组大肠杆菌细胞不对称还原4氯乙酰乙酸乙酯合成(R)-(+)-4-氯-3-羟基丁酸乙酯[J]. 催化学报,2005,26(11): 993-998.
Jing Keju, Xu Zhinan, Lin Jianping, et al. Asymmetric reduction of ethyl 4-Chloroacetoacetate to ethyl (R)-(+)-4-chloro-3-hydroxybutyrate by recombinant Escherichia coli[J]. Chin J Catalysis,2005,26(11): 993-998.
[36]Wada M, Yoshizumi A, Furukawa Y, et al. Cloning and overexpression of the Exiguobacterium sp. F4-gene encoding a new short chain dehydrogenase, which catalyzes the stereoselective reduction of ethyl 3-oxo-3-(2-thienyl) propanoate to ethyl (s)-3-hydroxy-3-(2-thieny) propanoate[J]. Biosci Biotechnol Biochem, 2004,68 (7): 1481-1488.
[37]张玉彬. 生物催化的手性合成[M]. 北京: 化学工业出版社, 2002: 184-185.
[38]Rodriguez S, Kayser M, Stewart J D. Improving the stereoselectivity of bakers- yeast reductions by genetic engineering[J]. Org Lett,1999,1(8): 1153-1155.
[39]Rodriguez S, Kayser M, Stewart J D. Highly stereoselective reagents for β-keto ester reductions by genetic engineering of baker′s yeast[J]. J Am Chem Soc,2001,123(8): 1547-1555.
[40]Kataoka M, Kita K, Wada M. Novel bioreduction system for the production of chiral alcohols[J]. Appl Microbiol Biotechnol,2003,62(2): 437-445.

相似文献/References:

[1]孟晨璐,张梁,丁重阳,等.构建羰基还原酶基因工程菌生物转化产l-麻黄碱[J].生物加工过程,2009,7(01):29.[doi:006]
 MENG Chen-lu,ZHANG Liang,DING Chong-yang,et al.Construction and application of carbonyl reductase gene engineering strain in biosynthesis of l-ephedrine[J].Chinese Journal of Bioprocess Engineering,2009,7(03):29.[doi:006]
[2]孙鹏,张文,倪晔,等.羰基还原酶产生菌 SW 2026的产酶条件及其不对称催化还原4′-氯苯乙酮[J].生物加工过程,2009,7(05):19.
 SUN Peng,ZHANG Wen,NI Ye,et al.Enhancement of asymmetric reduction of 4′-chloroacetophenone by optimizing culture conditions of carbonyl reductase-producing strain Candida krusei SW 2026 [J].Chinese Journal of Bioprocess Engineering,2009,7(03):19.
[3]王翔,穆晓清,徐岩,等.葡萄酒酵母不对称还原苯甲酰甲酸合成(R)-扁桃酸[J].生物加工过程,2009,7(05):34.
 WANG Xiang,MU Xiao-qing,XU Yan,et al.Asymmetric reduction of benzoylformic acid into (R)-mendelic acid by whole cell Saccharomyces ellipsoideus catalysis[J].Chinese Journal of Bioprocess Engineering,2009,7(03):34.
[4]杨忠华,王玉,曾嵘,等.利用微生物重组技术促进羰基不对称还原研究进展[J].生物加工过程,2009,7(06):8.
 YANG Zhong-hua,WANG Yu,ZENG Rong,et al.Recent progress of asymmetric reduction of ketones with microbial recombinant technology[J].Chinese Journal of Bioprocess Engineering,2009,7(03):8.
[5]欧玲,谢谚,许建和.还原酶催化羰基不对称还原的应用进展[J].生物加工过程,2011,9(02):72.[doi:doi:10.3969/j.issn.1672-3678.2011.02.015]
 OU Ling,XIE Yan,XU Jianhe.Advances in application of reductases in carbonyl asymmetric reduction[J].Chinese Journal of Bioprocess Engineering,2011,9(03):72.[doi:doi:10.3969/j.issn.1672-3678.2011.02.015]
[6]张蓓花,倪晔,孙志浩.羰基还原酶产生菌Candida ontarioensis制备(R)-2-氯-1-(3-氯苯基)乙醇[J].生物加工过程,2012,10(03):17.[doi:10.3969/j.issn.1672-3678.2012.03.004]
 ZHANG Beihua,NI Ye,SUN Zhihao.Asymmetric synthesis of(R)-2-chloro-1-(3-chlorophenyl)ethanol by carbonyl reductase-producing strain Candida ontarioensis[J].Chinese Journal of Bioprocess Engineering,2012,10(03):17.[doi:10.3969/j.issn.1672-3678.2012.03.004]
[7]张海灵,高秀珍,陈曦,等.米曲霉(Aspergillus oryzae)RIB40中烯酮/烯酯还原酶的异源表达及性质分析[J].生物加工过程,2013,11(01):41.[doi:10.3969/j.issn.1672-3678.2013.01.008]
 ZHANG Hailing,GAO Xiuzhen,CHEN Xi,et al.Heterologous expression and characterization of enoate reductase from Aspergillus oryzae RIB40[J].Chinese Journal of Bioprocess Engineering,2013,11(03):41.[doi:10.3969/j.issn.1672-3678.2013.01.008]
[8]郁惠蕾,黄磊,倪燕,等.羰基生物还原法合成手性醇的研究进展[J].生物加工过程,2013,11(03):71.[doi:10.3969/j.issn.1672-3678.2013.03.013]
 YU Huilei,HUANG Lei,NI Yan,et al.Advances in synthesis of chiral alcohols by carbonyl bioreduction[J].Chinese Journal of Bioprocess Engineering,2013,11(03):71.[doi:10.3969/j.issn.1672-3678.2013.03.013]
[9]黄和,杨忠华,姚善泾.面包酵母催化羰基不对称还原合成手性醇的研究[J].生物加工过程,2004,2(02):52.[doi:10.3969/j.issn.1672-3678.2004.02.010]
[10]仪明君,宋广亮,朱红军,等.面包酵母催化不对称合成4-氯-(R)-3-羟基丁酸乙酯[J].生物加工过程,2005,3(02):27.[doi:10.3969/j.issn.1672-3678.2005.02.006]
 YI Ming-jun,SONG Guang-liang,ZHU Hong-jun,et al.Asymmetric synthesis of ethyl 4-Chloro-(R)-3-hydroxybutyrate with baker′s yeast[J].Chinese Journal of Bioprocess Engineering,2005,3(03):27.[doi:10.3969/j.issn.1672-3678.2005.02.006]

备注/Memo

备注/Memo:
收稿日期:2008-05-13
基金项目:福建省科技计划重点资助项目(2008N0120); 泉州市科技计划重点资助项目(2006G05)
作者简介:肖美添(1968—),男,福建泉州人,博士,副教授,研究方向:生物催化与生物合成,E-mail:mtxiao@hqu.edu.cn
更新日期/Last Update: