|本期目录/Table of Contents|

[1]欧阳嘉,李鑫,王向明,等.纤维素结合域的研究进展[J].生物加工过程,2008,6(02):10-16.[doi:10.3969/j.issn.1672-3678.2008.02.002]
 OUYANG Jia,LI Xin,WANG Xiang-ming,et al.Advances in cellulose-binding module[J].Chinese Journal of Bioprocess Engineering,2008,6(02):10-16.[doi:10.3969/j.issn.1672-3678.2008.02.002]
点击复制

纤维素结合域的研究进展()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
6
期数:
2008年02期
页码:
10-16
栏目:
出版日期:
2008-03-30

文章信息/Info

Title:
Advances in cellulose-binding module
作者:
欧阳嘉1李鑫1王向明2严明2徐琳2
1. 南京林业大学, 化学工程学院, 南京, 210037; 2. 南京工业大学, 制药与生命科学学院, 南京, 210009
Author(s):
OUYANG Jia1 LI Xin1 WANG Xiang-ming2 YAN Ming2 XU Lin2
关键词:
纤维素结合域纤维素酶吸附特异性
分类号:
Q786
DOI:
10.3969/j.issn.1672-3678.2008.02.002
摘要:
纤维资源是生物界最为丰富的有机碳源,有效酶解植物纤维资源对于减缓能源枯竭和食品危机具有重要意义.然而,天然纤维素结构上的复杂多样性为酶的攻击和可及带来巨大困难.为了克服这一问题,自然界中能够利用纤维原料的酶大多由相对独立的两种结构域、催化结构域(CD)、纤维素结合结构域(CBM)组成.其中,CBM有助于酶与不溶性底物的结合,在纤维原料酶解中具有重要作用.CBM所具备的特殊的底物特异性不仅对于提高酶与纤维的可及度,增强纤维素酶解效率,揭示纤维素酶解机制具有重要意义,而且应用在基因工程产品的分离纯化,酶制剂的品质改善及细胞固定化等领域也有很好的发展前景.本文就近年来CBM的研究现状及其发展前景进行了综述.

参考文献/References:

[1] 高培基. 纤维素酶降解机制及纤维素酶分子结构与功能研究进展 [J]. 自然科学进展, 2003, (13):21-29.doi:10.3321/j.issn:1002-008X.2003.01.004.
[2] Rabinovich M L, Melnick M S, Bolobova A V. The structure and mechanism of action of cellulolytic enzymes [J]. Biochemistry(Moscow), 2002.850-871.
[3] Tomme P, Boraston A L, McLean B. Characterization and affinity applications of cellulose-binding domains [J]. Journal of Chromatography B:Biomedical Sciences and Applications, 1998.283, 296.
[4] Linder M, Teeri T T. The roles and function of cellulose-binding domains [J]. Journal of Biotechnology, 1997.15-28.doi:10.1016/S0168-1656(97)00087-4.
[5] Levy I, Shoseyov O. Cellulose-binding domains biotechnological applications [J]. Biotechnology Advances, 2002, (20):191, 213.doi:10.1016/S0734-9750(02)00006-X.
[6] Rabinovich M L, Melnik M S, Bolobova A V. Microbial cellulases [J]. Applied Biochemistry and Microbiology, 2002.305–321.doi:10.1023/A:1016264219885.
[7] ReeseE G, Siu G H, LevIsionH S. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis [J]. Journal of Bacteriology, 1950(9):485-497.
[8] 刘树立, 王华, 王春艳. 纤维素酶分子结构及作用机理的研究进展 [J]. 食品科技, 2007(7):12-15.doi:10.3969/j.issn.1005-9989.2007.07.004.
[9] Tomme P, Warren R A J, Miller R C. Cellulose-binding domains:Classification and properties [J]. ACS Symposium Series, 1995.143-163.
[10] Boraston A B, Bolam D N, Gilbert H J. Carbohydrate-binding modules:fine-tuning polysaccharide recognition [J]. Biochemical Journal, 2004.769-781.doi:10.1042/BJ20040892.
[11] Linder M, Nevanen T, Teeri T T. Design of a pH-dependent cellulose-binding domain [J]. Federation of European Biochemical Societies Letters(FEBS), 1999, (1):13-16.doi:10.1016/S0014-5793(99)00253-7.
[12] Linder M, Lindeberg G, Reinikainen T. The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution [J]. Federation of European Biochemical Societies Letters(FEBS), 1995, (1):96-98.doi:10.1016/0014-5793(95)00961-8.
[13] Linder M, Mattinen M L, Kontteli M. Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I [J]. Protein Science, 1995(4):1056-1064.
[14] Linder M, Salovuori I, Ruohonen L. Characterization of a double cellulose-binding domain:synergistic high-affinity binding to cellulose [J]. Journal of Biological Chemistry, 1996, (271):21268-21272.
[15] Linder M, Mattinen M L, Teleman A. Interaction between cellohexaose and cellulose binding domains from Trichoderma reesei cellulases [J]. Federation of European Biochemical Societies Letters(FEBS), 1997.291-296.
[16] Davies G J, Ducros V, Lewis R J. Oligosaccharide specificity of a family 7 endoglucanase:insertion of potential sugar-binding subsites [J]. Journal of Biotechnology, 1997.91-100.doi:10.1016/S0168-1656(97)00092-8.
[17] Linder M, Teere T T. The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose [J]. Proceedings of the National Academy of Sciences(USA), 1996, (22):12251-12255.doi:10.1073/pnas.93.22.12251.
[18] Bothwell M K, Wilson D B, Irwin D C. Binding reversibility and surface exchange of Thermonospora fusca E3 and E5 and Trichoderma reesei CBHI [J]. Enzyme and Microbial Technology, 1997(6):411-417.doi:10.1016/S0141-0229(96)00178-0.
[19] Mclean B W, Bray M R, Boraston A B. Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose:specificity and identification of functionally important amino acid residues [J]. Protein Engineering, 2000, (13):801-809.doi:10.1093/protein/13.11.801.
[20] Boraston A B. The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven [J]. Biochemical Journal, 2005, (part 2):479-484.doi:10.1042/BJ20041473.
[21] Coutinho J B, Gilkes N R, Kilburn D G. The nature of the cellulose-binding domain affects the activities of a bacterial endoglucanase on different forms of cellulose [J]. FEMS Microbiology Letters, 1993.211-217.doi:10.1111/j.1574-6968.1993.tb06516.x.
[22] Brun E, Johnson P E, Creagh A L. Structure and binding specificity of the second N-terminal cellulose-binding domain from Cellulomonas fimi endoglucanase C [J]. Biochemical Journal, 2000, (10):2445-2458.doi:10.1021/bi992079u.
[23] Johnson P E, Joshi M D, Tomme P. Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi CenC determined by nuclear magnetic resonance spectroscopy [J]. Biochemical Journal, 1996.14381-14394.doi:10.1021/bi961612s.
[24] Bolam D N, Ciruela A, Mcqueen-Mason S. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity [J]. Biochemical Journal, 1998, (part 3):775-781.
[25] Nagy T, Simpson P, Williamson M P. All three surface tryptophans in type IIa cellulose binding domains play a pivotal role in binding both soluble and insoluble ligands [J]. Federation of European Biochemical Societies Letters(FEBS), 1998.312-316.
[26] Raghothama S, Simpson P J, Szabo L. Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A [J]. Biochemical Journal, 2000(5):978-984.doi:10.1021/bi992163+.
[27] Tormo J, Lamed R, Chirino A J. Crystal structure of a bacterial family-III cellulose-binding domain:a general mechanism for attachment to cellulose [J]. European Molecular Biology Organization Journal, 1996, (15):5739-5751.
[28] Notenboom V, Boraston A B, Kilburn D G. Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10 in native and ligand-bound forms [J]. Biochemical Journal, 2001, (21):6248-6256.doi:10.1021/bi0101704.
[29] Hall J, Black G W, Ferreira L M A. The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp.cellulosa is important for the efficient hydrolysis of Avicel [J]. Biochemical Journal, 1995.749-756.
[30] Bae H, Turcotte G, Chamberland H. A comparative study between an endoglucanase IV and its fused protein complex Cel5-CBM6 [J]. FEMS Microbiology Letters, 2003, (2):175-181.doi:10.1016/S0378-1097(03)00593-7.
[31] Limon M C, Margolles-Clark E, Benitez T. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum [J]. FEMS Microbiology Letters, 2001, (1):57-63.
[32] Hagglund P, Eriksson T, Collen A. A cellulose-binding module of the Trichoderma reesei β-mannanase Man5A increases the mannan-hydrolysis of complex substrates [J]. Journal of Biotechnology, 2003, (1):37-48.doi:10.1016/S0168-1656(02)00290-0.
[33] Black G W, Rixon J E, Clarke J H. Cellulose binding domains and linker sequences potentate the activity of hemicellulases against complex substrates [J]. Journal of Biotechnology, 1997, (57):59-69.doi:10.1016/S0168-1656(97)00089-8.
[34] 汪天虹, 王春卉, 高培基. 纤维素酶纤维素吸附区的结构与功能 [J]. 生物工程进展, 2000(2):37-40.doi:10.3969/j.issn.1671-8135.2000.02.008.
[35] Lemos M A, Teixeira J A, Domingues M R M. The enhancement of the cellulolytic activity of cellobiohydrolase I and endoglucanase by the addition of cellulose binding domains derived from Trichoderma reesei [J]. Enzyme and Microbial Technology, 2003(1):35-40.doi:10.1016/S0141-0229(02)00235-1.
[36] Bae H, Turcotte G, Kim Y S. Cel6B of Thermobifidus fuscaand a Cel5-CBM6 of Ruminococcus albuscontaining a cellulose binding site show synergistic effect on hydrolysis of native plant cellulose [J]. FEMS Microbiology Letters, 2004, (2):325-331.doi:10.1111/j.1574-6968.2004.tb09499.x.
[37] Kittur F S, Mangala S L, Rusd A. Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase from Thermotoga maritimato soluble xylan [J]. Federation of European Biochemical Societies Letters(FEBS), 2003.147-151.
[38] Kaneko S, Ichinose H, Fujimoto Z. Structure and function of a family 10 -xylanase chimera of Streptomyces olivaceoviridis E-86FXYN and Cellulomonas fimi Cex [J]. Journal of Biological Chemistry, 2004.26619-26626.doi:10.1074/jbc.M308899200.
[39] Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules:biochemical properties and novel applications [J]. Molecular Biology Review, 2006.283-295.
[40] Kavoosi M, Meijer J, Kwan E. Inexpensive one-step purification of polypeptides expressed in Escherichia coli as fusions with the family 9 carbohydrate-binding module of xylanase 10A from T.maritima [J]. Journal of Chromatography B:Biomedical Sciences and Applications, 2004.87-94.
[41] Haynes C A, Tomme P, Kilburn D G. Two-phase partition affinity separation system and affinity separated cell-containing composition [P]. US 6048715, 2000.
[42] Lam H, Kavoosi M, Haynes C A. Affinity-enhanced protein partitioning in decyl beta-D-glucopyranoside twophase aqueous micellar systems [J]. Biotechnology and Bioengineering, 2005, (4):381-392.doi:10.1002/bit.20300.
[43] Santiago-Hernandez J A, Vasquez-Bahena J M, Calixto-Romo M A. Direct immobilization of a recombinant invertase to avicel by E.coli overexpession of a fusion protein containg the extracellulasr inverase from Zymomonas mobilis and the carbohydrate-binding domain CBD CEX from Cellulomonas fimi [J]. Enzyme and Microbial Technology, 2006(1):172-176.doi:10.1016/j.enzmictec.2005.10.052.
[44] Levy I, Ward G, Hadar Y. Oxidation of 4-bromophenol by recombinant cellulose binding domain horseradish peroxidase fused protein immobilized to cellulose [J]. Biotechnology and Bioengineering, 2003, (2):223-231.doi:10.1002/bit.10562.
[45] Rotticci-Mulder J C, Gustavsson M, Holmquist M. Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain [J]. Protein Expression and Purification, 2001, (21):386-392.doi:10.1006/prep.2000.1387.
[46] Francisco J A, Stathopoulos C, Warren R A. Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains [J]. Bio/Technology, 1993(1):491-495.doi:10.1038/nbt0493-491.
[47] Wang A A, Mulchandani A, Chen W. Whole-cell immobilization using cell surface-exposed cellulose-binding domain [J]. Biotechnology Progress, 2001, (17):407-411.doi:10.1021/bp0100225.
[48] Berry M J, Davis P J, Gidley M J. Conjugated polysaccharide fabric detergent and conditioning products [P]. US 6225462, 2001.
[49] Din N, Gilkes R N, Tekant B. Non-hydrolytic disruption of cellulose fibers by the binding domain of a bacterial cellulose [J]. Bio/Technology, 1991(9):1096-1099.doi:10.1038/nbt1191-1096.
[50] Gilkes N R, Kilburn D G, Miller R C. Methodsand compositions for modification of polysaccharide characteristics [P]. US 5821358, 1998.
[51] Cavaco-Paulo A, Morgado J, Andreaus J. Interactions of cotton with CBD peptides [J]. Enzyme and Microbial Technology, 1999, (25):639-643.doi:10.1016/S0141-0229(99)00101-5.
[52] Levy I, Nussinovitch A, Shpigel E. Recombinant cellulose cross-linking protein:a novel paper-modification biomaterial [J]. Cellulose, 2002(9):91-98.doi:10.1023/A:1015848701029.

相似文献/References:

[1]宋娜娜,宋向阳,欧阳嘉,等.里氏木霉与黑曲霉混合发酵产纤维素酶及其水解特性[J].生物加工过程,2010,8(05):5.[doi:doi:10.3969/j.issn.1672-3678.2010.05.002]
 SONG Na-na,SONG Xiang-yang,OUYANG Jia,et al.Cellulose production from fungal mixed culture of Trichoderma reesei RUT C-30 and Apsergillus niger NL02 on steam-exploded corn stover and characteristics of hydrolysis[J].Chinese Journal of Bioprocess Engineering,2010,8(02):5.[doi:doi:10.3969/j.issn.1672-3678.2010.05.002]
[2]韩立荣,祝传书,孙平平,等.青霉F10-2固态发酵植物农药残渣产纤维素酶[J].生物加工过程,2010,8(05):11.[doi:doi:10.3969/j.issn.1672-3678.2010.05.003]
 HAN Li-rong,ZHU Chuan-shu,SUN Ping-ping,et al.Solid state fermentation for producing cellulase by Penicillum waksmanii F10-2 by using plant pestcide residue[J].Chinese Journal of Bioprocess Engineering,2010,8(02):11.[doi:doi:10.3969/j.issn.1672-3678.2010.05.003]
[3]连之娜,李鑫,欧阳嘉,等.2种纤维素酶水解效果比较及酶蛋白组分分析[J].生物加工过程,2010,8(06):57.[doi:10.3969/j.issn.1672-3678.2010.06.011]
 LIAN Zhi-na,LI Xin,OUYANG Jia,et al.Comparison between two kinds of cellulases in enzymatic hydrolysis and their secreted proteins analysis[J].Chinese Journal of Bioprocess Engineering,2010,8(02):57.[doi:10.3969/j.issn.1672-3678.2010.06.011]
[4]于莹,姚日生,齐本坤,等.绿色木霉ZY-1固态发酵产纤维素酶[J].生物加工过程,2009,7(01):54.
 YU Ying,YAO Ri-sheng,QI Ben-kun,et al.Cellulase production by Trichoderma viride ZY-1 under solid-state fermentation[J].Chinese Journal of Bioprocess Engineering,2009,7(02):54.
[5]许云峰,周建芹,陈晶磊,等.内生青霉菌纤维素酶辅助提取槐米总黄酮[J].生物加工过程,2009,7(02):18.
 XU Yun-feng,ZHOU Jian-qin,CHEN Jing-lei,et al.Application of cellulase from endophytic Penicillium sp.B-4 on total flavonoid extraction from flower buds of Sophara japonica[J].Chinese Journal of Bioprocess Engineering,2009,7(02):18.
[6]乐易林,邵蔚蓝.极端耐热纤维素酶Cel74的表达、纯化与特性[J].生物加工过程,2009,7(03):64.
 LE Yi-lin,SHAO Wei-lan,Expression and characterization of Thermotoga maritima cellulase Cel74[J].Chinese Journal of Bioprocess Engineering,2009,7(02):64.
[7]朱年青,夏文静,勇强.里氏木霉纤维素酶的分离纯化及酶学性质[J].生物加工过程,2010,8(03):40.[doi:10.3969/j.issn.1672-3678.2010.03.008]
 ZHU Nian-qing,XIA Wen-jing,YONG Qiang.Purification and characterization of cellulase from Trichoderma reesei[J].Chinese Journal of Bioprocess Engineering,2010,8(02):40.[doi:10.3969/j.issn.1672-3678.2010.03.008]
[8]梁娟然,戴菲辉,苏思莹,等.纤维素酶在二甲基亚砜微扰条件下的动力学行为和光谱学变化[J].生物加工过程,2011,9(02):29.[doi:doi:10.3969/j.issn.1672-3678.2011.02.006]
 LIANG Juanran,DAI Feihui,SU Siying,et al.Kinetics and spectrum changes of cellulase in dimethyl sulfoxide solution[J].Chinese Journal of Bioprocess Engineering,2011,9(02):29.[doi:doi:10.3969/j.issn.1672-3678.2011.02.006]
[9]祖彩霞,李志敏,叶勤.里氏木霉Trichoderma reesei产纤维素酶的发酵培养基碳氮源优化[J].生物加工过程,2011,9(04):6.[doi:10.3969/j.issn.1672-3678.2011.04.002]
 ZU Caixia,LI Zhimin,YE Qin.Culture medium optimization for producing cellulase by Trichoderma reesei[J].Chinese Journal of Bioprocess Engineering,2011,9(02):6.[doi:10.3969/j.issn.1672-3678.2011.04.002]
[10]钟耀华,钱远超,任美斌,等.丝状真菌降解转化纤维素的机制与遗传改良前景[J].生物加工过程,2014,12(01):46.[doi:10.3969/j.issn.1672-3678.2014.01.008]
 ZHONG Yaohua,QIAN Yuanchao,REN Meibin,et al.Progress in bioconversion of cellulose by filamentous fungi and related genetic engineering strategies[J].Chinese Journal of Bioprocess Engineering,2014,12(02):46.[doi:10.3969/j.issn.1672-3678.2014.01.008]

备注/Memo

备注/Memo:
基金项目:国家重点基础研究发展规划(973计划),国家高技术研究发展计划(863计划)
更新日期/Last Update: 1900-01-01