|本期目录/Table of Contents|

[1]陈柳霓,李笑寒,田平芳.大肠杆菌和肺炎克雷伯氏菌的共培养研究[J].生物加工过程,2017,15(04):34-39.[doi:10.3969/j.issn.1672-3678.2017.04.006]
 CHEN Liuni,LI Xiaohan,TIAN Pingfang.Co-culture of Escherichiacoli and Klebsiella pneumoniae[J].Chinese Journal of Bioprocess Engineering,2017,15(04):34-39.[doi:10.3969/j.issn.1672-3678.2017.04.006]
点击复制

大肠杆菌和肺炎克雷伯氏菌的共培养研究()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
15
期数:
2017年04期
页码:
34-39
栏目:
出版日期:
2017-07-30

文章信息/Info

Title:
Co-culture of Escherichiacoli and Klebsiella pneumoniae
文章编号:
1672-3678(2017)04-0034-06
作者:
陈柳霓李笑寒田平芳
北京化工大学 生命科学与技术学院,北京 100029
Author(s):
CHEN LiuniLI XiaohanTIAN Pingfang
College of Life Science and Technology,Beijing University of Chemical Technology,Beijing 100029,China
关键词:
大肠杆菌 肺炎克雷伯氏菌 混合培养 相对密度 氯霉素 卡那霉素
分类号:
Q81
DOI:
10.3969/j.issn.1672-3678.2017.04.006
文献标志码:
A
摘要:
为研究大肠杆菌(Escherichia coli)和肺炎克雷伯氏菌(Klebsiella pneumoniae)混菌体系,构建了基于抗生素筛选的2株重组菌。将携带卡那霉素抗性基因的载体pET-28a转化到肺炎克雷伯氏菌中,获得重组菌K. pneumoniae(pET-28a); 将携带氯霉素抗性基因cm的重组载体pET-cm(卡那霉素和氯霉素双抗性载体)转化到大肠杆菌中,获得重组菌E. coli(pET-cm),在卡那霉素抗性培养基中单独培养及混合培养上述两株重组菌。结果发现:单独培养条件下,E. coliK. pneumoniae的相对菌体密度为57.87%; 混合培养条件下,E. coliK. pneumoniae的相对菌体密度为1.94%; E. coliK. pneumoniae相对于各自单独培养的存活率分别为2.57%和76.60%。上述结果表明,K. pneumoniae为混菌体系的优势菌,可强烈抑制E. coli的生长。

参考文献/References:

[1] CONTAG P R.Organism co-culture in the production of biofuels:US,008986962B2[P].2015-03-24.
[2] ZHOU K,QIAO K J,EDGAR S,et al.Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J].Nat Biotechnol,2015,33(4):377-383.
[3] ZUROFF T R,XIQUES S B,CURTIS W R.Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans yeast co-culture[J].Biotechnol Biofuels,2013,6(1):59.
[4] MACLEAN R C,FUENTES-HERNANDEZ A,GREIG D,et al.A mixture of "cheats" and "co-operators" can enable maximal group benefit[J].PLoS Biol,2010,8(9):e1000486.
[5] GRILLO M A,COLOMBATTO S.S-adenosylmethionine and its products[J].Amino Acids,2008,34(2):187-193.
[6] HE W,FU L,LI G,et al.Production of chondroitin in metabolically engineered E.coli[J].Metab Eng,2015,27:92-100.
[7] ASHOK S,SANKARANARAYANAN M,KO Y,et al.Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumonia ΔdhaTΔyqhD which can produce vitamin B12 naturally[J].Biotechnol Bioeng,2013,110(2):511-524.
[8] HUANG Y,LI Z,SHIMIZU K,et al.Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae[J].Bioresour Technol,2012,103(1):351-359.
[9] PETROV K,PETROVA P.High production of 2,3-butanediol from glycerol by Klebsiella pneumonia G31[J].Appl Microbiol Biotechnol,2009,84(4):659-665.
[10] FENG X,DING Y,XIAN M,et al.Production of optically pure D-lactate from glycerol by engineered Klebsiella pneumoniae strain[J].Bioresour Technol,2014,172:269-275.
[11] FORAGE R G,FOSTER M A.Glycerol fermentation in Klebsiella pneumoniae:functions of the coenzyme B12-dependent glycerol and diol dehydratases[J].J Bacteriol,1982,149(2):413-419.
[12] SCHELLENBERGER J,QUE R,FLEMING R M T,et al.Quantitative prediction of cellular metabolism with constraint-based models:the COBRA Toolbox v2.0[J].Nat Protoc,2011,6(9):1290-1307.
[13] YOU L,COX R S III,WEISS R,et al.Programmed population control by cell-cell communication and regulated killing[J].Nature,2004,428:868-871.
[14] AN J H,GOO E,KIM H,et al.Bacterial quorum sensing and metabolic slowing in a cooperative population[J].Proc Natl Acad Sci USA,2014,111(41):14912-14917.
[15] GARDNER T S,CANTOR C R,COLLINS J J.Construction of a genetic toggle switch in Escherichia coli[J].Nature,2000,403:339-342.
[16] MINTY J J,SINGER M E,SCHOLZ S A,et al.Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass[J].Proc Natl Acad Sci USA,2013,110(36):14592-14597.

相似文献/References:

[1]成成,李兆丰,李彬,等.利用重组大肠杆菌生产α-环糊精葡萄糖基转移酶[J].生物加工过程,2009,7(03):56.
 CHENG Cheng,LI Zhao-feng,LI Bin,et al.Production of α-cyclodextrin glycosyltransferase in recombinant Escherichia coli[J].Chinese Journal of Bioprocess Engineering,2009,7(04):56.
[2]尹强,康振,钟盛华,等.产琥珀酸工程菌株的发酵工艺条件优化[J].生物加工过程,2010,8(04):1.[doi:10.3969/j.issn.1672-3678.2010.04.001]
 YIN Qiang,KANG Zhen,ZHONG Shenghua,et al.Optimization of fermentation production of succinateengineered by? Escherichia coli[J].Chinese Journal of Bioprocess Engineering,2010,8(04):1.[doi:10.3969/j.issn.1672-3678.2010.04.001]
[3]赵清风,陈介南,张林,等.AgNO3对大肠杆菌和金黄色葡萄球菌的抗菌作用及机制[J].生物加工过程,2011,9(03):52.[doi:10.3969/j.issn.1672-3678.2011.03.011]
 ZHAO Qingfeng,CHEN Jienan,ZHANG Lin,et al.Antimicrobial activity and mechanism of silver nitrate on Escherichia coli and Staphylococcus aureus[J].Chinese Journal of Bioprocess Engineering,2011,9(04):52.[doi:10.3969/j.issn.1672-3678.2011.03.011]
[4]魏淼,刘欢,李艳,等.共表达甘油脱氢酶和二羟丙酮激酶对大肠杆菌生长及甘油代谢的影响[J].生物加工过程,2011,9(05):59.[doi:doi:10.3969/j.issn.1672-3678.2011.05.012]
 WEI Miao,LIU Huan,LI Yan,et al.Effects on growth and glycerol metabolism in E.coli by coexpression protein GldA and DhaKLM[J].Chinese Journal of Bioprocess Engineering,2011,9(04):59.[doi:doi:10.3969/j.issn.1672-3678.2011.05.012]
[5]李倩,王梦,刘珞,等.L-乳酸脱氢酶在大肠杆菌BL-21(DE3)中的表达[J].生物加工过程,2011,9(06):21.[doi:doi:10.3969/j.issn.1672-3678.2011.06.005]
 LI Qian,WANG Meng,LIU Luo,et al.Expression of L-lactate dehydrogenase in Escherichia coli BL-21(DE3)[J].Chinese Journal of Bioprocess Engineering,2011,9(04):21.[doi:doi:10.3969/j.issn.1672-3678.2011.06.005]
[6]刘嵘明,梁丽亚,王光明,等.基于辅因子调控对大肠杆菌两阶段发酵产丁二酸的影响[J].生物加工过程,2012,10(03):1.[doi:10.3969/j.issn.1672-3678.2012.03.001]
 LIU Rongming,LIANG Liya,WANG Guangming,et al.Effect of cofactor regulation on succinate production in Escherichia coli during dual-phase fermentation[J].Chinese Journal of Bioprocess Engineering,2012,10(04):1.[doi:10.3969/j.issn.1672-3678.2012.03.001]
[7]王珊珊,高璐,严明,等.过表达氨基葡萄糖脱氨酶对大肠杆菌氨基葡萄糖合成及中心碳代谢的影响[J].生物加工过程,2013,11(04):42.[doi:10.3969/j.issn.1672-3678.2013.04.008]
 WANG Shanshan,GAO Lu,YAN Ming,et al.Effects of overexpression glucosamine deaminase on glucosamine synthesis and central carbon metabolism in Escherichia coli[J].Chinese Journal of Bioprocess Engineering,2013,11(04):42.[doi:10.3969/j.issn.1672-3678.2013.04.008]
[8]郑志永,关怡新,林东强,等.重组基因表达对大肠杆菌生理的影响[J].生物加工过程,2004,2(02):13.[doi:10.3969/j.issn.1672-3678.2004.02.003]
[9]杨雪莲,严明,许琳,等.AspC基因导入前后E.coli BL21蛋白质组的解析[J].生物加工过程,2005,3(04):49.[doi:10.3969/j.issn.1672-3678.2005.04.011]
 YANG Xue-lian,YAN Ming,XU Lin,et al.Comparative proteome analysis of AspC gene overexpression in E.coli BL21[J].Chinese Journal of Bioprocess Engineering,2005,3(04):49.[doi:10.3969/j.issn.1672-3678.2005.04.011]
[10]叶逢春,陈银,邢新会.重组大肠杆菌生产可溶性MBP融合肝素酶的培养条件优化[J].生物加工过程,2006,4(03):28.[doi:10.3969/j.issn.1672-3678.2006.03.005]
 YE Feng-chun,CHEN Yin,XING Xin-hui.Optimization of cultivation conditions of recombinant E. coli for production of soluble MBP-fused heparinase Ⅰ[J].Chinese Journal of Bioprocess Engineering,2006,4(04):28.[doi:10.3969/j.issn.1672-3678.2006.03.005]

备注/Memo

备注/Memo:
收稿日期:2017-06-09
基金项目:国家自然科学基金(21276014、21476011); 国家高技术研究发展计划(863计划)(2015AA021003)
作者简介:陈柳霓(1992—),女,重庆涪陵人,研究方向:微生物代谢工程; 田平芳(联系人),教授,E-mail:tianpf@mail.buct.edu.cn.
更新日期/Last Update: 2017-07-30