|本期目录/Table of Contents|

[1]邹根,刘睿,魏勇军,等.木质纤维素酶基因资源挖掘及真菌酶系改造[J].生物加工过程,2014,12(01):63-71.[doi:10.3969/j.issn.1672-3678.2014.01.010]
 ZOU Gen,LIU Rui,WEI Yongjun,et al.Mining resource of lignocellulase genes and optimizing fungal enzyme system[J].Chinese Journal of Bioprocess Engineering,2014,12(01):63-71.[doi:10.3969/j.issn.1672-3678.2014.01.010]
点击复制

木质纤维素酶基因资源挖掘及真菌酶系改造()
分享到:

《生物加工过程》[ISSN:1672-3678/CN:32-1706/Q]

卷:
12
期数:
2014年01期
页码:
63-71
栏目:
出版日期:
2014-01-20

文章信息/Info

Title:
Mining resource of lignocellulase genes and optimizing fungal enzyme system
文章编号:
1672-3678(2014)01-0063-09
作者:
邹根刘睿魏勇军周志华严兴
中国科学院 上海生命科学研究院 植物生理生态研究所 合成生物学重点实验室,上海 200032
Author(s):
ZOU GenLIU RuiWEI YongjunZhou ZhihuaYAN Xing
Key Laboratory of Synthetic Biology,Institute of Plant Physiology and Ecology,Shanghai Institutesfor Biological Sciences, Chinese Academy of Sciences,Shanghai 200032,China
关键词:
木质纤维素 酶系 丝状真菌
分类号:
Q938.1
DOI:
10.3969/j.issn.1672-3678.2014.01.010
文献标志码:
A
摘要:
简述了木质纤维素酶基因资源挖掘的策略和方法及其在丝状真菌酶系改造中的应用。从候选基因的获取(木质纤维素酶基因资源的挖掘和高效利用)、外源基因的表达、酶系的复配和重构等方面综述了丝状真菌酶系改造的最新进展,并提出了丝状真菌酶系改造中亟须解决的关键问题。

参考文献/References:

[1] Himmel M E,Ding S Y,Johnson D K,et al.Biomass recalcitrance:engineering plants and enzymes for biofuels production[J].Science,2007,315(5813):804-807.
[2] Fang X,Shen Y,Zhao J,et al.Status and prospect of lignocellulosic bioethanol production in China[J].Bioresour Technol,2010,101(13):4814-4819.
[3] Sanchez C.Lignocellulosic residues:biodegradation and bioconversion by fungi[J].Biotechnol Adv,2009,27(2):185-194.
[4] Rubin E M.Genomics of cellulosic biofuels[J].Nature,2008,454(7206):841-845.
[5] Lynd L R,Weimer P J,Van Zyl W H,et al.Microbial cellulose utilization:fundamentals and biotechnology[J].Microbiol Mol Biol Rev,2002,66(3):506-577.
[6] Xie G,Bruce D C,Challacombe J F,et al.Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii [J].Appl Environ Microbiol,2007,73(11):3536-3546.
[7] Qi M,Jun H S,Forsberg C W.Characterization and synergistic interactions of Fibrobacter succinogenes glycoside hydrolases[J].Appl Environ Microbiol,2007,73(19):6098-6105.
[8] Blumer-Schuette S E,Giannone R J,Zurawski J V,et al.Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass[J].J Bacteriol,2012,194(15):4015-4028.
[9] Tolonen A C,Chilaka A C,Church G M.Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367[J].Mol Microbiol,2009,74(6):1300-1313.
[10] Baker S E,Le Crom S,Schackwitz W,et al.Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing[J].PNAS,2009,106(38):16151-16156.
[11] Kubicek C P,Mikus M,Schuster A,et al.Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina[J].Biotechnol Biofuels,2009,doi:10.1186/1754-6834-2-19.
[12] Seidl V,Gamauf C,Druzhinina I S,et al.The Hypocrea jecorina(Trichoderma reesei)hypercellulolytic mutant RUT C30 lacks a 85 kb(29 gene-encoding)region of the wild-type genome[J].BMC Genomics,2008,doi:10.1186/1471-2164-9-327.
[13] Martinez D,Berka R M,Henrissat B,et al.Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei(syn.Hypocrea jecorina)[J].Nature Biotechnol,2008,26(5):553-560.
[14] Gusakov A V.Alternatives to Trichoderma reesei in biofuel production[J].Trends Biotechnol,2011,29(9):419-425.
[15] Liu G,Qin Y,Li Z,et al.Improving lignocellulolytic enzyme production with Penicillium:from strain screening to systems biology[J].Biofuels,2013,4(5):523-534.
[16] Liu G,Zhang L,Qin Y,et al.Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes[J].Sci Rep,2013,doi:10.1038/srep01569.
[17] Liu G,Zhang L,Wei X,et al.Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens[J].PloS One,2013,8(2):e55185.
[18] Pope P,Denman S,Jones M,et al.Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores[J].PNAS,2010,107(33):14793-14798.
[19] Dai X,Zhu Y,Luo Y,et al.Metagenomic insights into the fibrolytic microbiome in Yak Rumen[J].PloS One,2012,7(7):e40430.
[20] Liu N,Zhang L,Zhou H,et al.Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite(Odontotermes yunnanensis)[J].PLoS One,2013,8(7):e69184.
[21] Wilson D B.Cellulases and biofuels[J].Curr Opin Biotechnol,2009,20(3):295-299.
[22] Langston J A,Shaghasi T,Abbate E,et al.Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61[J].Appl Environ Microbiol,2011,77(19):7007-7015.
[23] Phillips C M,Beeson IV W T,Cate J H,et al.Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa[J].ACS Chem Biol,2011,6(12):1399-1406.
[24] Bey M,Berrin J G,Poidevin L,et al.Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes[J].Microb Cell Fact,2011,10(1):113-128.
[25] J?ger G,Girfoglio M,Dollo F,et al.How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis[J].Biotechnol Biofuels,2011,4(1):33-49.
[26] Wang Y,Tang R,Tao J,et al.Quantitative investigation of non-hydrolytic disruptive activity on crystalline cellulose and application to recombinant swollenin[J].Appl Microbiol Biotechnol,2011,91(5):1353-1363.
[27] Cantarel B L,Coutinho P M,Rancurel C,et al.The carbohydrate-active enzymes database(CAZy):an expert resource for glycogenomics[J].Nucleic Acids Res,2009,37(S1):233-238.
[28] Levasseur A,Drula E,Lombard V,et al.Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes[J].Biotechnol Biofuels,2013,doi:10.1186/1754-6834-6-41.
[29] Yin Y,Mao X,Yang J,et al.dbCAN:a web resource for automated carbohydrate-active enzyme annotation[J].Nucleic Acids Res,2012,40(W1):445-451.
[30] Aspeborg H,Coutinho P M,Wang Y,et al.Evolution,substrate specificity and subfamily classification of glycoside hydrolase family 5(GH5)[J].BMC Evolut Biol,2012,12(1):186-202.
[31] Naumoff D.Hierarchical classification of glycoside hydrolases[J].Biochemistry(Moscow),2011,76(6):622-635.
[32] Busk P K,Lange L.Function-based classification of carbohydrate-active enzymes by recognition of short,conserved peptide motifs[J].Appl Environ Microbiol,2013,79(11):3380-3391.
[33] Han Q,Liu N,Robinson H,et al.Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig-like domain[J].Biotechnol Bioeng,2013,110(12):3093-3103.
[34] U.S.Department of Energy.Genomes OnLine Database [EB/OL].[2013-11-15].http://www.genomesonline.org/cgi-bin/GOLD/index.cgi.
[35] Pagani I,Liolios K,Jansson J,et al.The Genomes OnLine Database(GOLD)v.4:status of genomic and metagenomic projects and their associated metadata[J].Nucleic Acids Res,2012,40(D1):571-579.
[36] Rubin E M.Genomics of cellulosic biofuels[J].Nature,2008,454(7206):841-845.
[37] Medie F M,Davies G J,Drancourt M,et al.Genome analyses highlight the different biological roles of cellulases[J].Nature Rev Microbiol,2012,10(3):227-234.
[38] Hess M,Sczyrba A,Egan R,et al.Metagenomic discovery of biomass-degrading genes and genomes from cow rumen[J].Science,2011,331(6016):463-467.
[39] Duan C J,Feng J X.Mining metagenomes for novel cellulase genes[J].Biotechnol Lett,2010,32(12):1765-1775.
[40] Liu N,Yan X,Zhang M,et al.Microbiome of fungus-growing termites:a new reservoir for lignocellulase genes[J].Appl Environ Microbiol,2011,77(1):48-56.
[41] Wang Q,Qian C,Zhang X Z,et al.Characterization of a novel thermostable β-glucosidase from a metagenomic library of termite gut[J].Enzyme Microb Technol,2012,51(6-7):319-324.
[42] Geng A,Zou G,Yan X,et al.Expression and characterization of a novel metagenome-derived cellulase Exo2b and its application to improve cellulase activity in Trichoderma reesei[J].Appl Microbiol Biotechnol,2012,96(4):951-962.
[43] Yan X,Geng A,Zhang J,et al.Discovery of(hemi-)cellulase genes in a metagenomic library from a biogas digester using 454 pyrosequencing[J].Appl Microbiol Biotechnol,2013,97(18):8173-8182.
[44] Zou G,Shi S,Jiang Y,et al.Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering[J].Microb Cell Fact,2012,doi:10.1186/1475-2859-11-21.
[45] Gabor E M,Alkema W B,Janssen D B.Quantifying the accessibility of the metagenome by random expression cloning techniques[J].Environ Microbiol,2004,6(9):879-886.
[46] Aakvik T,Degnes K F,Dahlsrud R,et al.A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species[J].FEMS Microbiol Lett,2009,296(2):149-158.
[47] Lubertozzi D,Keasling J D.Developing Aspergillus as a host for heterologous expression[J].Biotechnol Adv,2009,27(1):53-75.
[48] Bouws H,Wattenberg A,Zorn H.Fungal secretomes:nature’s toolbox for white biotechnology[J].Appl Microbiol Biotechnol,2008,80(3):381-388.
[49] Uzbas F,Sezerman U,Hartl L,et al.A homologous production system for Trichoderma reesei secreted proteins in a cellulase-free background[J].Appl Microbiol Biotechnol,2012,93(4):1601-1608.
[50] Li J,Wang J,Wang S,et al.Achieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters[J].Microb Cell Fact,2012,doi:10.1186/1475-2859-11-84.
[51] Eriksson K K,Vago R,Calanca V,et al.EDEM contributes to maintenance of protein folding efficiency and secretory capacity[J].J Biol Chem,2004,279(43):44600-44605.
[52] te Biesebeke R,van Biezen N,de Vos W M,et al.Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation[J].Appl Microbiol Biotechnol,2005,67(1):75-82.
[53] Wei W,Chen L,Zou G,et al.N-glycosylation affects the proper folding,enzymatic characteristics and production of a fungal β‐glucosidase[J].Biotechnol Bioeng,2013,110(12):3075-3084.
[54] Moralejo F J,Cardoza R E,Gutierrez S,et al.Thaumatin production in Aspergillus awamori by use of expression cassettes with strong fungal promoters and high gene dosage[J].Appl Environ Microbiol,1999,65(3):1168-1174.
[55] Duncan S,Schilling J.Carbohydrate-hydrolyzing enzyme ratios during fungal degradation of woody and non-woody lignocellulose substrates[J].Enzyme Microb Tech,2010,47(7):363-371.
[56] Peterson R,Nevalainen H.Trichoderma reesei RUT-C30:thirty years of strain improvement[J].Microbiology,2012,158(1):58-68.
[57] Ma X S,Zotter S,Kofler J,et al.Experimental generation of single photons via active multiplexing[J].Phys Rev A,2011,doi:10.1103/PhysRevA.83.043814.
[58] Del Pozo M V,Fernandez-Arrojo L,Gil-Martinez J,et al.Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail[J].Biotechnol Biofuels,2012,doi:10.1186/1754-6834-5-73.
[59] Gao D,Uppugundla N,Chundawat S P,et al.Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides[J].Biotechnol Biofuels,2011,doi:10.1186/1754-6834-4-5.
[60] Mba Medie F,Davies G J,Drancourt M,et al.Genome analyses highlight the different biological roles of cellulases[J].Nature Rev Microbiol,2012,10(3):227-234.
[61] Vaaje-Kolstad G,Westereng B,Horn S J,et al.An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides[J].Science,2010,330(6001):219-222.
[62] Harris P V,Welner D,McFarland K C,et al.Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61:structure and function of a large,enigmatic family[J].Biochemistry,2010,49(15):3305-3316.
[63] Seo S W,Yang J,Min B E,et al.Synthetic biology:tools to design microbes for the production of chemicals and fuels[J].Biotechnol Adv,2013,31(6):811-817.
  (责任编辑管珺)

相似文献/References:

[1]陈晓萍,孙付保,张建华,等.评价木质纤维素预处理效果的新方法 [J].生物加工过程,2010,8(02):1.[doi:1672- 3678( 2010) 02- 0001- 07]
 CHEN Xiao-ping,SUN Fu-bao,ZHANG Jian-hua,et al.A method for evaluating pretreatment effectiveness of lignocellulosics[J].Chinese Journal of Bioprocess Engineering,2010,8(01):1.[doi:1672- 3678( 2010) 02- 0001- 07]
[2]王风芹,楚乐然,谢慧,等.纤维燃料丁醇研究进展[J].生物加工过程,2009,7(01):1.[doi:001]
 WANG Feng-qin,CHU Le-ran,XIE Hui,et al.Progress and prospective of cellulosic butanol biofuel[J].Chinese Journal of Bioprocess Engineering,2009,7(01):1.[doi:001]
[3]王铎,常春.木质纤维素原料酶水解产乙醇工艺的研究进展[J].生物加工过程,2010,8(04):72.[doi:10.3969/j.issn.1672-3678.2010.04.014]
 WANG Duo,CHANG Chun.Progress in enzymatic hydrolysis of cellulosic biomass and the fermentation production of ethanol[J].Chinese Journal of Bioprocess Engineering,2010,8(01):72.[doi:10.3969/j.issn.1672-3678.2010.04.014]
[4]汪城墙,沈煜,张艳艳,等.酿酒酵母L-阿拉伯糖转化乙醇代谢工程的研究进展[J].生物加工过程,2014,12(01):86.[doi:10.3969/j.issn.1672-3678.2014.01.013]
 WANG Chengqiang,SHEN Yu,ZHANG Yanyan,et al.Research progress in ethanol fermentation by Saccharomyces cerevisiae using L-arabinose[J].Chinese Journal of Bioprocess Engineering,2014,12(01):86.[doi:10.3969/j.issn.1672-3678.2014.01.013]
[5]朱跃钊,卢定强,万红贵,等.木质纤维素预处理技术研究进展[J].生物加工过程,2004,2(04):11.[doi:10.3969/j.issn.1672-3678.2004.04.003]
[6]吴利娟,吴斌,何冰芳.木质纤维素酸解副产物对D-乳酸生产菌Sporolactobacillus sp.Y2-8生长及发酵的影响[J].生物加工过程,2014,12(05):29.[doi:10.3969/j.issn.1672-3678.2014.05.005]
 WU Lijuan,WU Bin,HE Bingfang.Effects of byproducts from acid hydrolysis of lignocellulose on growth and fermentation of Sporolactobacillus.sp Y2-8[J].Chinese Journal of Bioprocess Engineering,2014,12(01):29.[doi:10.3969/j.issn.1672-3678.2014.05.005]
[7]林海龙.木质纤维素生物炼制的研究进展[J].生物加工过程,2017,15(06):44.[doi:10.3969/j.issn.1672-3678.2017.06.007]
 LIN Hailong.Research progress in biorefinery of lignocellulosic biomass[J].Chinese Journal of Bioprocess Engineering,2017,15(01):44.[doi:10.3969/j.issn.1672-3678.2017.06.007]

备注/Memo

备注/Memo:
收稿日期:2013-11-18
基金项目:国家重点基础研究发展计划(973计划)(2011CB707400)
作者简介:邹根(1980—),男,浙江慈溪人,博士,副研究员,研究方向:真菌遗传学; 严兴(联系人),副研究员,yanxing@sibs.ac.cn.
更新日期/Last Update: 2014-01-30