|Table of Contents|

Research progress in microbial laboratory evolution(PDF)


Research Field:
Publishing date:


Research progress in microbial laboratory evolution
ZHU Chaoyi1ZHU Muzi2LI Shuang1
1.School of Biology and Biological Engineering,South China University of Technology,Guangzhou 510006,China; 2.Guangdong Open Laboratory of Applied Microbiology,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application,State Key Laboratory of Applied Microbiology(South China), Guangdong Institute of Microbiology,Guangzhou 510070,China


[1] BURGARD A,BURK M J,OSTERHOUT R,et al.Development of a commercial scale process for production of 1,4-butanediol from sugar[J].Curr Opin Biotechnol,2016,42:118-125.
[2] PADDON C J,WESTFALL P J,PITERA D J,et al.High-level semi-synthetic production of the potent antimalarial artemisinin[J].Nature,2013,496:528-532.
[3] CHUBUKOV V,MUKHOPADHYAY A,PETZOLD C J,et al.Synthetic and systems biology for microbial production of commodity chemicals[J].Npj Syst Biol Appl,2016,2(1):16009.
[4] DRAGOSITS M,MATTANOVICH D.Adaptive laboratory evolution:principles and applications for biotechnology[J].Microb Cell Fact,2013,12:64.
[5] CASPETAL L,CHEN Y,GHIACI P,et al.Altered sterol composition renders yeast thermotolerant[J].Science,2014,346:75-78.
[6] ZHU M,FAN W,CHA Y,et al.Dynamic cell responses in Thermoanaerobacterium sp.under hyperosmotic stress[J].Sci Rep,2017,7:10088.
[7] YANG X,ZHU M,HUANG X,et al.Valorisation of mixed bakery waste in non-sterilized fermentation for L-lactic acid production by an evolved Thermoanaerobacterium sp.strain[J].Bioresour Technol,2015,198:47-54.
[8] MOHAMED E T,WANG S,LENNEN R M,et al.Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution[J].Microb Cell Fact,2017,16(1):204.
[9] STRUCKO T,ZIRNGIBL K,PEREIRA F,et al.Laboratory evolution reveals regulatory and metabolic trade-offs of glycerol utilization in Saccharomyces cerevisiae[J].Metab Eng,2018,47:73-82.
[10] SHEPELIN D,HANSEN A S L,LENNEN R,et al.Selecting the best:evolutionary engineering of chemical production in microbes[J].Genes,2018,DOI:10.3390/genes9050249.
[11] REYES L H,GOMEZ J M,KAO K C.Improving carotenoids production in yeast via adaptive laboratory evolution[J].Metab Eng,2014,21:26-33.
[12] GREENER A,CALLAHAN M,JERPSETH B.An efficient random mutagenesis technique using an E.coli mutator strain[J].Mol Biotechnol,1997,7(2):189-195.
[13] SONDEREGGER M,SAUER U.Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose[J].Appl Environ Microbiol,2003,69(4):1990-1998.
[14] BADRAN A H,LIU D R.In vivo continuous directed evolution[J].Curr Opin Chem Biol,2015,24:1-10.
[15] CIRINO P C,KMAYER K M,UMENO D.Generating mutant libraries using error-prone PCR[J].Methods Mol Biol,2003,231:3-9.
[16] 徐卉芳,张先恩,张用梅.体外分子定向进化研究进展[J].生物化学与生物物理进展,2002,29(2):518-521.
[17] MADISON A C,ROYAL M W,VIGNEAULT F,et al.Scalable device for automated microbial electroporation in a digital microfluidic platform[J].ACS Synth Biol,2017,6(9):1701-1709.
[18] SI T,CHAO R,MIN Y,et al.Automated multiplex genome-scale engineering in yeast[J].Nat Commun,2017,8:15187.
[19] WANG H H,ISAACS F J,CARR P A,et al.Programming cells by multiplex genome engineering and accelerated evolution[J].Nature,2009,460:894-898.
[20] NG C Y,FARASAT I,MARANAS C D,et al.Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration[J].Metab Eng,2015,29:86-96.
[21] RAMAN S,ROGERS J K,TAYLOR N D,et al.Evolution-guided optimization of biosynthetic pathways[J].Proc Natl Acad Sci USA,2014,111(50):17803-17808.
[22] DICARLO J E,CONLEY A J,PENTTILA M,et al.Yeast oligo-mediated genome engineering(YOGE)[J].ACS Synth Biol,2013,2(12):741-749.
[23] RONDA C,PEDERSEN L E,SOMMER M O,et al.CRMAGE:CRISPR optimized MAGE recombineering[J].Sci Rep,2016,6:19452.
[24] GARST A D,BASSALO M C,PINES G,et al.Genome-wide mapping of mutations at single-nucleotide resolution for protein,metabolic and genome engineering[J].Nat Biotechnol,2017,35(1):48-55.
[25] LIANG L,LIU R,GARST A D,et al.CRISPR enAbled trackable genome engineering for isopropanol production in Escherichia coli[J].Metab Eng,2017,41:1-10.
[26] ESVELT K M,CARLSON J C,LIU D R.A system for the continuous directed evolution of biomolecules[J].Nature,2011,472:499-503.
[27] PU J,ZINKUS-BOLTZ J,DICKINSON B C.Evolution of a split RNA polymerase as a versatile biosensor platform[J].Nat Chem Biol,2017,13(4):432-438.
[28] BRYSON D I,FAN C,GUOL T,et al.Continuous directed evolution of aminoacyl-tRNA synthetases[J].Nat Chem Biol,2017,13(12):1253-1260.
[29] BADRAN A H,GUZOV V M,HUAI Q,et al.Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance[J].Nature,2016,533:58-63.
[30] CROOK N,ABATEMARCO J,SUN J,et al.In vivo continuous evolution of genes and pathways in yeast[J].Nat Commun,2016,7:13051.
[31] FABRET C,PONCET S,DANIELSEN S,et al.Efficient gene targeted random mutagenesis in genetically stable Escherichia coli strains[J].Nucleic Acids Res,2000,28(21):E95.
[32] CAMPS M,NAUKKARINEN J,JOHNSON B P,et al.Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I[J].Proc Natl Acad Sci USA,2003,100(17):9727-9732.
[33] RAVIKUMAR A,ARRIETA A,LIU C C.An orthogonal DNA replication system in yeast[J].Nat Chem Biol,2014,10(3):175-177.
[34] RAVIKUMAR A,ARZUMANYAN G A,OBADI M K A,et al.Scalable continuous evolution of genes at mutation rates above genomic error thresholds[J].Cell,2018,doi:10.1016/j.cell.2018.10.021.
[35] ARZUMANYAN G A,GABRIEL K N,RAVIKUMAR A,et al.Mutually orthogonal DNA replication systems in vivo[J].ACS Synth Biol,2018,7(7):1722-1729.
[36] HALPERIN S O,TOU C J,WONG E B,et al.CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window[J].Nature,2018,560:248-252.
[37] DE CRECY E,METZGAR D,ALLEN C,et al.Development of a novel continuous culture device for experimental evolution of bacterial populations[J].Appl Microbiol Biotechnol,2007,77(2):489-496.
[38] DE CRECY E,JARONSKI S,LYONS B,et al.Directed evolution of a filamentous fungus for thermotolerance[J].BMC Biotechnol,2009,9:74.
[39] MATTEAU D,BABY V,PELLETIER S,et al.A small-volume,low-cost,and versatile continuous culture device[J].PLoS ONE,2015,10(7):e0133384.
[40] TAKAHASHI C N,MILLER A W,EKNESS F,et al.A low cost,customizable turbidostat for use in synthetic circuit characterization[J].ACS Synth Biol,2015,4(1):32-38.
[41] HOFFMANN S A,WOHLTAT C,MULLER K M,et al.A user-friendly,low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter[J].PLoS ONE,2017,12(7):e0181923.
[42] HORINOUCHI T,MINAMOTO T,SUZUKI S,et al.Development of an automated culture system for laboratory evolution[J].J Lab Autom,2014,19(5):478-482.
[43] CALLENS C,COELHO N C,MILLER A W,et al.A multiplex culture system for the long-term growth of fission yeast cells[J].Yeast,2017,34(8):343-355
[44] JAKIELA S,KAMINSKI T S,CYBULSKI O,et al.Bacterial growth and adaptation in microdroplet chemostats[J].Angew Chem Int Ed,2013,52(34):8908-8911.
[45] WONG B G,MANCUSO C P,KIRIAKOV S,et al.Precise,automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER[J].Nat Biotechnol,2018,36(7):614-623.
[46] GAINZA-CIRAUQUI P,CORREIA B E.Computational protein design:the next generation tool to expand synthetic biology applications[J].Curr Opin Biotechnol,2018,52:145-152.
[47] BARROZO A,BORSTNAR R,MARLOIE G,et al.Computational protein engineering:bridging the gap between rational design and laboratory evolution[J].Int J Mol Sci,2012,13(12):12428-12460.
[48] EBERT M C,PELLETIER J N.Computational tools for enzyme improvement:why everyone can- and should-use them[J].Curr Opin Chem Biol,2017,37:89-96.
[49] VA ROSSUM T,KENGEN S W,VAN DER OOST J.Reporter-based screening and selection of enzymes[J].FEBS J,2013,280(13):2979-2996.
[50] SCHAERLI Y,ISALAN M.Building synthetic gene circuits from combinatorial libraries:screening and selection strategies[J].Mol Biosyst,2013,9(7):1559-1567.


Last Update: 2019-01-30